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Résune :
On présente des Simulations des Grandes Echellesédeulement turbulent qui sedeloppe dans un canal plan de
longueur88 h & Re = 4880 0.7 M = 0.7. L'effet de conditions d’enées Ealistes de conditions de sorties faible-

ment Eflechissantes sera anafyet discut. Des cas dcoulement supersonique avec distorsion par effet de gmadie
pression adverse seront congiéls par la suite.

Abstract :

Large Eddy Simulation of the turbulent flow which spatialgv€elops in a plane channel with a length8% £ will be
presented folRe = 4880 and M = 0.7. The effect of realistic inflow conditions and low reflectiwgflow conditions will

be analysed and discussed. Supersonic channel flow casestosidn of the flow by mean of adverse pressure gradient
will be further considered.

Mots clefs : LES; compressible channel flow, numerical soft boundary conditins

There exist in the literature many numerical simulationsarhpressible turbulent flow developed in a channel
by mean of driven source terms to model pressure drop efféct®, 3, 4, 5, 6, 7, 8]. Concerning the direct
simulation of the compressible flow developing in a channetehs no publications in the literature, but the
low Reynolds number study performed by Poinsot and Lele [@k&Eess a set of soft inlet and outlet boundary
conditions for compressible flows. The purpose of the pregdedysds to adress partly this issue based on the
computation and the analysis of the 3D turbulent comprésfiitw developing in a plane channel using Large
Eddy Simulation technique.

1 Governing equations

FIG. 1 — Geometry of the spatially developing channel flow

The flow geometry consists of a plane channel with a widt{figure 1). The fluid is assumed to be an ideal gas
(air) with constant ratio of specific heas= E—P =14,R=c¢, — ¢, = 287JKg~'K~! and constant Prandt|

numberPr = 0.7. Isothermal-wall boundan; conditions are imposed. The migakcode initialy developed
in Grenoble LEGI and further in Poitiers LEA solves the Navierke®(NS) equations presently written in a

conservative form with Large Eddy Simulation technique. The §Saions are non-dimensionalized by the
wall temperaturd’,,, the channel half-widtlh, the bulk-averaged densipy = ﬁ f}? pdy, and the bulk mass
flux (pu)p = ﬁ f_*f pudy. The governing equations read in a conservative form
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wherel/ is the vector of conservative variabléé= (p, pu, pv, pw, pe)t, andF; is the the vector of filtered
dimensionless fluxes respectively

(Fi)y = pu (2)
(Fi)y = Pl + 71Mzw5i1 — (;,}6 + ,Ongs> Si (3)
(Fi)s = plgz + 7]342@5@'2 — <Z§e + ﬁysgs) Sio (4)
(Fi)y = pusts + 7]342?351'3 — <I§e + ﬁl/sgs> Si %)
@y = wle+ =) - oS- 7 (G + 52 ) o ©

The equation of state (ideal gas law) closes the system otiegaalescribing compressible fluid flow, based
on themacropressureo and themacrotemperature introduced by Comté: Lesieur [10],

w >~ pu (7)
The total energy (for a perfect gas) is defrnecbas_ 7+ VM pii2, and the traceless strain rate tensor is
Sw =3+ 3 % — %gz; dij. S = (0, f,O,O,7M2W) consrsts of the source terms for the momentum and

energy equatlons which will be further defined for the dextmyn of inflow conditions.

(P)o/pp (pi)oh
Non-dimensional parameters are the Mach nunider R, — 0.7, the Reynolds numbéte = (T, )4 880,

and the Prandtl numbefr = ¥ = Cg‘gg) = 0.7. A power lawy = u(T') = p,(T/T,,)" is applied for the

molecular dynamic viscosity, as a relatively good appration of the Sutherland law.
Large-Eddy Simulations are performed with an eddy-viscosity an eddy-diffusivity Sub-Grid Scale (SGS)

model based on the Filtered Structure Functlon (FSF) [11, 12, 13]yHEicosity is given by [SF =

sgs
0.0014 0_3/2 A{||V8a(z + r) — (z)]|? )H A= Eddy diffusivity is obtained from\,,, = ‘j); =2 where

the SGS Prandtl number is set constﬁ’mg s = 0.6. Cxg = 1.4 is the Kolmogorov constant. This model has
shown to be efficient for solving compressrble boundary layéthout inhibiting transition the turbulence.

The discretisation of the fluxesr(, F», F3) in each direction is performed based on an extension oflg ful
explicit Mc Cormack scheme, modified by GottliébTurkel [14] to get second order in time and fourth order
in space. Time advancement is split in two steps, a predatdra corrector step, which results in a globally
centered fourth order scheme. This predictor-correctoeswhis valid only for the inner points, excepting the
two last points in each direction. For these points, thevdévies are defined by Kennedy Carpenter [15].
This stencil will be applied only for the free boundaries (imfland outflow). Each subdomain 1 to 7 consists
of a plane channel with a heigit, = 2h (channel half width), a length, = 47h, awidth L, = 4/37h, and
contains 673,920 grid points distributed along the strem@wlirection f, = 128) the spanwise direction
(n, = 81), and the transverse direction,(= 65) including a refinement at the wall to reach the first grid point

aty™ = 0.2. The full domain consists of about 4.7 million points and é&ated using MPI parallelisation on 7
processors on NEC-SX8 IDRIS.

2 Inflow and outflow conditions

The flow is evolving spatially from domain 2 to domain 7 (Fig 1).uNy developed channel flow using stream-
wise periodic boundary conditions is computed for domain @rder to ensure realistic inflow conditions for
domain 2. This procedure is necessary to develop time depenetdistic turbulent structures. Non-reflecting
outflow conditions based on wave decomposition [16, 9] ardieghpt the outlet of domain 7. Characteristic
analysis described by Thompson in [17, 18] is applied for Eabprations, and generalized to the viscous-
diffusive Navier-Stokes equations by Poingot.ele [9]. It consists in decomposing hyperbolic equatiorts in
wave modes of velocity to determine which wave is propagaitito and out of the computational domain.
The behavior of the outward propagating waves is defined gnbgethe solution at and within the boundary,
whereas the inward propagating waves are specified as bgucataditions.

The Navier-Stokes equations (1) are converted to an equivedétof wave equations, which represent nonli-
near waves propagating at characteristic velocities inctdeection only, as (for the laminar form)

dp 9 o
Dt it )+ alow) =0 @
8(pu) 9 0. 1 owsy)
5 T udy + pd3 + a*y(ﬂ““) + @(Puw) ~Re oz 9)
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d(pv) 0 1 0 1 O(S25)
dy + pd z -~ A0y 10
gr T vl edit g (prot Rt g e) = B (10)
o(pw) o 0 11 0(uSy)
9 9 - 11
o+ wdi+pds + 9y (pwv) + =~ (pww + 5 2P = & oz, (11)
9 1 d
(pe) + M2 | Z(upug)di + puds + pody + pwds | + — (12)
0 0 0 9 M y wo oT
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The characteristic velocities are given as the solution efdlgenvalue problem and ake = u — c,wrm,
A2 = A3 = M\ = wand\s = u + Chorm, Wherec,, is a normalized speed of sound, .., = sz ”ff’ A
normalized pressure ig,orm = #p. A1 and )5 are the velocities of sound waves moving in the negative
and positiver-directions,\s is the convection velocity (the speed of entropy waves) evkil and A\, are the
velocities at whichv andw are advected in the-direction. The system of Egs. (8)-(12) includes derivatives
normal to ther = 0 or L,-boundary {; to ds),

0
o (D2 + (s + L) T R
(L5 + L) %(cnm,mgu) +1(é — y)u2gern
"~ Bt L5~ L) - ugs g (13)
3 u@
xr
L4 u(gil;

where theL;’s are the amplitudes of characteristic waves associatddesich characteristic velocity,. The
L;’s are given by :

8pnorm au
L = — PCnorm 14
! At ( ox pe 8:{7) (14)
8P ODnorm ov ow ODnorm ou
Ly = Ly = Ls = norm 15
=X < Crorm 8:10 O ) 3 )\38 4=MF or 5 A5 < B + pc 97 ) )

2.1 Subsonic inflow

At the inlet, it was chosen to impose the velocitias,y and w, as well as the temperatur&, using the
solution of the fully-developed channel flow, domainThe only remaining unknown is the densjtywhich
can be obtained through the continuity equation. For a subsbree-dimensional flow, the only characteristic
variable L, propagates against the flow direction, while the other féyr, L3, L4 and Ls, are entering the
domain.L; is computed from the interior of the spatially developinguehel using Eq. (14). The entering
characteristic variabless; and L, are estimated,

ou
Ls = Li—2pchorm— 16
5 1 pPC ot ( )
1 pciorm or
Ly = 5(7 —1)(Ls + L1) + T o (17)

Density is avanced in time using Eq. (8) and thus, it is strpmglupled to both velocity and temperature
fluctuations in the periodical channel domain 1.

2.2 Turbulent realistic inflow

Equations (16) and (17) are fed with the velocity and tempegaturbulent fields computed in domain 1.
Domain 1 consists of a fully developed turbulent channel fleear. the incompressible case, the strategy to
drive the flow at constant mass flux consists of adding, on tt hignd siderhs) of the momentum equation,

a source termy [19] which can be viewed as a mean favourable pressure gradhier the compressible case,
and by analogy with this procedure the present strategyattsfer energy to the flow at constant total energy
consists of adding, on tirls of the total energy equation, a source téwhwhich can be viewed as the rate of
work produced by a mean streamwise enthalpy flux [8].

For compressible channel flow, it is customary to considesthgce ternmyf in the momentum equation as an
external force to the flow system [1, 6, 2, 3, 4, 7, 5]. In the enéstudy we do not consider such assumption,



but derive a source term by seeking a homogeneous veloaitydansity solution for the full compressible
Navier-Stokes equations. Pressure and thus internal ererdthe temperature are split into homogeneous
and non-homogeneous contributions, while density is damsd as homogeneous in the streamwise direction,
which is consistent with both the continuity equation aralitteal gas law,

p= o(x) —{—]5(-%,:1/,2,15) (18)
= (Phlw) + (r, 9, 2 1) (19)
= (pT)o(z) + pT(z,y, 2,1) (20)

Consequently, the corresponding source term is not eaurivab the work of an external force apd’ can
be homogeneous. In the present formulation the pressupeatiects directly the streamwise evolution of the

thermodynamic pressure [8]. A significant mean internal gnéwss is inducedjL 1 =1 ddIZO, and thus

a negative streamwise temperature gradient appears amigenisated by waII heat qux Since density is

assumed to be homogeneous, the mean temperature gradieng expressed at the wall = = pl ‘g;f’,

andT=Ee = £2=2 js homogeneous.
w p

2.3 Subsonic outflow

For non-reflecting subsonic outflow,, Ls, L4 and L; are computed using Egs. (15) and the incoming wave
L, has to be modeled. PoinsktLele [9] suggest to set

Ll — Lzluave 4 Lixact (21)

Following Rudy& Strikwerda [20], [21] we modeL{* = (1 — M;)cnorm >, where M is the local
Mach number. The exact par fdr, is estimated in the present work, based on the pressure dogjelm
L(iamCt = _(1 - Ml)cnor‘m f

For the Navier-Stokes equations, some more viscous conditiave to be added [9] to be consistent with
therhs of equations (10-14). A basic model consists of setting ¢bistributions to zero (present results). In
the final contribution, results will describe the effect oEkuerms in the present flow configuration involving
non-zero streamwise temperature gradients. A simple misdigrived from the source involved in domain 1,

A(wS1) A(uS3;)

al'j - ij =0 (22)
a(/Lng) - % @ N ’yMQRe 2
oz; Oz 0y 0.7 Pwlw / (23)

1

O (0T T 0T
0 <M3:1:j> ox 0z | M pQWwa (24)

3 Numerical results

Statistics performed on LES data are computed in time and spate ispanwise direction (the only one
homogeneous direction in the present case). Figure 2 shavstitbamwisec-distribution for the velocity,
temperature and pressure along the channel on the ceptarlthat the first grid point near the wall. Numerical
results show that mean velocity is constant along the chavinike both mean temperature and mean pressure
decrease linearly witkr. The slope of the mean pressure distribution is close to tesspire drop equivalent
to the sourcef model derived in domain 1 (symbols). The scatter with the rhatihe outflow boundary will

be discussed in the final contribution. An important aspetheflow is the linear streamwise decrease of the
mean temperature which confirms the validity of the modelvéerifor domain 1. Mean density (not shown)
is constant along, which is consistent with asumptions performed for the inftamaditions. Figure 3 shows
isovalues in ther — y slice for the mean velocity, mean temperature and meanymesEhe results obtained
on the centerline of the channel are confirmed for the wholewéla Velocity is roughly constant along
pressure is independent gfand temperature is a function of battandy, which is consistent with analytical
solutions derived for such flow [8]. We note a slight defelectof the pressure isovalue in the near-wall region.
The effect of outflow boundary conditions on such behaviourlygldiscussed in the final contribution.

Figure (4) is a comparison between the domain 1 (left) and tmeaihs 2-7 (right) for the mean velocity
profiles in the channel wall-normal direction. The same behavis obtained and nearly no transient exists in
the spatially developing case, which means that inflow bogynetanditions are correct. We note that spanwise
and transverse velocities are not exactly zero, which cbealdelated to a compressibility effect and has to be
linked with the slight deflection of the pressure isovaluethmwall normal direction. Figure (5) is a similar
comparison for temperature, pressure and density. The tatype is normalised by the wall temperature
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which is linearly decreasing and therefore the profile of mdltemperature is independent of the streamwise
postition along the channel. Mean pressure is uniformlyrekesing from one domain to the next due to the

constant pressure drop. Finally mean density is uniformgoand is increasing at the wall since pressure is

constant along.
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FIG. 2 — Mean streamwise velocity (a), temperature (b) and pressure (exnStrise distribution on the cen-
terline (——) and at the first grid point in the wall-normal direction ( - - -).
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FiG. 3 — Isovalues of mean streamwise velocity (a), mean temperature (b) andnesaure (c)

4 Conclusion

LES of spatially developping compressible channel flow weréopered for Re = 4,880 andM = 0.7. The
present results show that the main trends for spatially ldpuey compressible channel flow are a constant
pressure drop and a constant temperature loss in the stisandwection. The assumption that density is
conserved is verified in practice based on LES computationsdbaanel with a length of abo@8 h. Further
results involving outflow boundary conditions effects, coagsibility effects and distorsion effects by mean
of adverse pressure gradient will be discussed in the finatiboition.
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FiG. 5 — Profiles of (a) mean temperature, (a) mean pressure, (c) meatydemdy developed channel domain
1 (M) and spatial computational boxes domains 2-7 (——).



