462 research outputs found

    Identification of active regulatory regions from DNA methylation data

    Get PDF
    We have recently shown that transcription factor binding leads to defined reduction in DNA methylation, allowing for the identification of active regulatory regions from high-resolution methylomes. Here, we present MethylSeekR, a computational tool to accurately identify such footprints from bisulfite-sequencing data. Applying our method to a large number of published human methylomes, we demonstrate its broad applicability and generalize our previous findings from a neuronal differentiation system to many cell types and tissues. MethylSeekR is available as an R package at www.bioconductor.or

    Overestimation of alternative splicing caused by variable probe characteristics in exon arrays

    Get PDF
    In higher eukaryotes, alternative splicing is a common mechanism for increasing transcriptome diversity. Affymetrix exon arrays were designed as a tool for monitoring the relative expression levels of hundreds of thousands of known and predicted exons with a view to detecting alternative splicing events. In this article, we have analyzed exon array data from many different human and mouse tissues and have uncovered a systematic relationship between transcript-fold change and alternative splicing as reported by the splicing index. Evidence from dilution experiments and deep sequencing suggest that this effect is of technical rather than biological origin and that it is driven by sequence features of the probes. This effect is substantial and results in a 12-fold overestimation of alternative splicing events in genes that are differentially expressed. By cross-species exon array comparison, we could further show that the systematic bias persists even across species boundaries. Failure to consider this effect in data analysis would result in the reproducible false detection of apparently conserved alternative splicing events. Finally, we have developed a software in R called COSIE (Corrected Splicing Indices for Exon arrays) that for any given set of new exon array experiments corrects for the observed bias and improves the detection of alternative splicing (available at www.fmi.ch/groups/gbioinfo

    Engineering of a conditional allele reveals multiple roles of XRN2 in Caenorhabditis elegans development and substrate specificity in microRNA turnover

    Get PDF
    Although XRN2 proteins are highly conserved eukaryotic 5ā€²ā†’3ā€² exonucleases, little is known about their function in animals. Here, we characterize Caenorhabditis elegans XRN2, which we find to be a broadly and constitutively expressed nuclear protein. An xrn-2 null mutation or loss of XRN2 catalytic activity causes a molting defect and early larval arrest. However, by generating a conditionally mutant xrn-2ts strain de novo through an approach that may be also applicable to other genes of interest, we reveal further functions in fertility, during embryogenesis and during additional larval stages. Consistent with the known role of XRN2 in controlling microRNA (miRNA) levels, we can demonstrate that loss of XRN2 activity stabilizes some rapidly decaying miRNAs. Surprisingly, however, other miRNAs continue to decay rapidly in xrn-2ts animals. Thus, XRN2 has unanticipated miRNA specificity in vivo, and its diverse developmental functions may relate to distinct substrates. Finally, our global analysis of miRNA stability during larval stage 1 reveals that miRNA passenger strands (miR*s) are substantially less stable than guide strands (miRs), supporting the notion that the former are mostly byproducts of biogenesis rather than a less abundant functional specie

    The DEAH-box RNA helicase RHAU binds an intramolecular RNA Gā€quadruplex in TERC and associates with telomerase holoenzyme

    Get PDF
    Guanine-quadruplexes (G4) consist of non-canonical four-stranded helical arrangements of guanine-rich nucleic acid sequences. The bulky and thermodynamically stable features of G4 structures have been shown in many respects to affect normal nucleic acid metabolism. In vivo conversion of G4 structures to single-stranded nucleic acid requires specialized proteins with G4 destabilizing/unwinding activity. RHAU is a human DEAH-box RNA helicase that exhibits G4-RNA binding and resolving activity. In this study, we employed RIP-chip analysis to identify en masse RNAs associated with RHAU in vivo. Approximately 100 RNAs were found to be associated with RHAU and bioinformatics analysis revealed that the majority contained potential G4-forming sequences. Among the most abundant RNAs selectively enriched with RHAU, we identified the human telomerase RNA template TERC as a true target of RHAU. Remarkably, binding of RHAU to TERC depended on the presence of a stable G4 structure in the 5ā€²-region of TERC, both in vivo and in vitro. RHAU was further found to associate with the telomerase holoenzyme via the 5ā€²-region of TERC. Collectively, these results provide the first evidence that intramolecular G4-RNAs serve as physiologically relevant targets for RHAU. Furthermore, our results suggest the existence of alternatively folded forms of TERC in the fully assembled telomerase holoenyzm

    Inference of Splicing Regulatory Activities by Sequence Neighborhood Analysis

    Get PDF
    Sequence-specific recognition of nucleic-acid motifs is critical to many cellular processes. We have developed a new and general method called Neighborhood Inference (NI) that predicts sequences with activity in regulating a biochemical process based on the local density of known sites in sequence space. Applied to the problem of RNA splicing regulation, NI was used to predict hundreds of new exonic splicing enhancer (ESE) and silencer (ESS) hexanucleotides from known human ESEs and ESSs. These predictions were supported by cross-validation analysis, by analysis of published splicing regulatory activity data, by sequence-conservation analysis, and by measurement of the splicing regulatory activity of 24 novel predicted ESEs, ESSs, and neutral sequences using an in vivo splicing reporter assay. These results demonstrate the ability of NI to accurately predict splicing regulatory activity and show that the scope of exonic splicing regulatory elements is substantially larger than previously anticipated. Analysis of orthologous exons in four mammals showed that the NI score of ESEs, a measure of function, is much more highly conserved above background than ESE primary sequence. This observation indicates a high degree of selection for ESE activity in mammalian exons, with surprisingly frequent interchangeability between ESE sequences

    Covariant equations for the three-body bound state

    Get PDF
    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including the Wigner rotations and rho-spin decomposition of the off-shell particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative rho-spin states of the off-shell particle.Comment: 57 pages, RevTeX, 6 figures, uses epsf.st
    • ā€¦
    corecore