103 research outputs found

    The utility of self-emulsifying oil formulation to improve the poor solubility of the anti HIV drug CSIC

    Get PDF
    BACKGROUND: CSIC (5-chloro-3-phenylsulfonylindole-2-carboxamide), a non-nucleoside reverse transcriptase inhibitor (NNRTI) has not been advanced as a therapeutic anti-HIV candidate drug due to its low aqueous solubility and poor bioavailability. OBJECTIVE: The objective of this work was to formulate CSIC into self-emulsifying oil formulations for the purpose of improving its aqueous solubility and evaluating in vitro antiretroviral activity. METHODS: CSIC self-emulsifying oil formulations (SEFs) were formulated and evaluated for droplet size, zeta potential, polydispersity index (PDI), viscosity, emulsification time, stability and bioactivity. RESULTS: Results showed significantly improved solubility of CSIC in the SEFs.The concentration of co-surfactant affected the droplet size, zeta potential and polydispersity index. In vitro bioactivity studies showed that the CSIC SEFs retained full anti-HIV activity. CONCLUSION: The in vitro data from this first attempt to formulate CSIC SEFs suggest that improvement on the aqueous solubility of CSIC through this delivery system may accentuate its antiretroviral effectiveness in vivo via bioavailability enhancement. The formulation is therefore intended as an oral anti-HIV agent for prophylactic and therapeutic uses

    Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication

    Full text link
    The human immunodeficiency virus type 1 genomic RNA primer-binding site (PBS) sequence comprises 18 nucleotides which are complementary to those at the 3\u27 end of the replication initiation primer tRNA(3Lys). To investigate the role of the PBS in viral replication, we either deleted the original wild-type PBS (complementary to tRNA(3Lys) or replaced it with DNA sequences complementary to either tRNA(1,2Lys) or tRNA(Phe). Transfection of COS cells with such molecular constructs yielded similar levels of viral progeny that were indistinguishable with regard to viral proteins and tRNA content. Virus particles derived from PBS-deleted molecular clones were noninfectious for MT-4, Jurkat, and CEM-T4 cells. However, infectious viruses were derived from constructs in which the PBS had been altered to sequences complementary to either tRNA(1,2Lys) or tRNA(Phe), although mutated forms showed significant lags in replication efficiency in comparison with wild types. Molecular analysis of reverse-transcribed DNA in cells infected by the mutated viruses indicated that both tRNA(1,2Lys) and tRNA(Phe) could function as primers for reverse transcription during the early stages of infection. Sequencing of full-length proviral DNA, obtained 6 days after infection, revealed the mutated PBS, indicating that a complete cycle of reverse transcription had occurred. During subsequent rounds of infection, reversion of the mutated PBS to wild-type sequences was observed, accompanied by increased production of viral gene products. Reversion to wild-type PBS sequences was confirmed both by specific PCR analysis, using distinct primer pairs, and by direct sequencing of amplified segments. We also performed endogenous in vitro reverse transcription experiments in which synthesis of minus-strand strong-stop viral DNA was primed from a synthetic RNA template containing a PBS complementary to various tRNA isoacceptors. These results showed that tRNA(3Lys) was a much more efficient primer of such reactions than either tRNA(1,2Lys) or tRNA(Phe).<br /

    Efficient Inhibition of HIV Replication in the Gastrointestinal and Female Reproductive Tracts of Humanized BLT Mice by EFdA

    Get PDF
    The nucleoside reverse transcriptase inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) in preclinical development exhibits improved safety and antiviral activity profiles with minimal drug resistance compared to approved NRTIs. However, the systemic antiviral efficacy of EFdA has not been fully evaluated. In this study, we utilized bone marrow/liver/thymus (BLT) humanized mice to investigate the systemic effect of EFdA treatment on HIV replication and CD4+ T cell depletion in the peripheral blood (PB) and tissues. In particular, we performed a comprehensive analysis of the female reproductive tract (FRT) and gastrointestinal (GI) tract, major sites of transmission, viral replication, and CD4+ T cell depletion and where some current antiretroviral drugs have a sub-optimal effect

    Synthesis and Properties of 2β€²-Deoxy-2β€²,4β€²-difluoroarabinose-Modified Nucleic Acids

    Get PDF
    We report the synthesis, thermal stability, and RNase H substrate activity of 2β€²-deoxy-2β€²,4β€²-difluoroarabino-modified nucleic acids. 2β€²-Deoxy-2β€²,4β€²-difluoroarabinouridine (2,β€²4β€²-diF-araU) was prepared in a stereoselective way in six steps from 2β€²-deoxy-2β€²-fluoroarabinouridine (2β€²-F-araU). NMR analysis and quantum mechanical calculations at the nucleoside level reveal that introduction of 4β€²-fluorine introduces a strong bias toward the North conformation, despite the presence of the 2β€²-Ξ²F, which generally steers the sugar pucker toward the South/East conformation. Incorporation of the novel monomer into DNA results on a neutral to slightly stabilizing thermal effect on DNA-RNA hybrids. Insertion of 2β€²,4β€²-diF-araU nucleotides in the DNA strand of a DNA-RNA hybrid decreases the rate of both human and HIV reverse transcriptase-associated RNase H-mediated cleavage of the complement RNA strand compared to that for an all-DNA strand or a DNA strand containing the corresponding 2β€²-F-araU nucleotide units, consistent with the notion that a 4β€²-fluorine in 2β€²-F-araU switches the preferred sugar conformation from DNA-like (South/East) to RNA-like (North)

    Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones

    Get PDF
    High-throughput screening of a National Cancer Institute library of pure natural products identified the hydroxylated tropolone derivatives Ξ²-thujaplicinol (2,7-dihydroxy-4-1(methylethyl)-2,4,6-cycloheptatrien-1-one) and manicol (1,2,3,4-tetrahydro-5-7-dihydroxy-9-methyl-2-(1-methylethenyl)-6H-benzocyclohepten-6-one) as potent and selective inhibitors of the ribonuclease H (RNase H) activity of human immunodeficiency virus-type 1 reverse transcriptase (HIV-1 RT). Ξ²-Thujaplicinol inhibited HIV-1 RNase H in vitro with an IC(50) of 0.2 ΞΌM, while the IC(50) for Escherichia coli and human RNases H was 50 ΞΌM and 5.7 ΞΌM, respectively. In contrast, the related tropolone analog Ξ²-thujaplicin (2-hydroxy-4-(methylethyl)-2,4,6-cycloheptatrien-1-one), which lacks the 7-OH group of the heptatriene ring, was inactive, while manicol, which possesses a 7-OH group, inhibited HIV-1 and E.coli RNases H with IC(50) = 1.5 ΞΌM and 40 ΞΌM, respectively. Such a result highlights the importance of the 2,7-dihydroxy function of these tropolone analogs, possibly through a role in metal chelation at the RNase H active site. Inhibition of HIV-2 RT-associated RNase H indirectly indicates that these compounds do not occupy the nonnucleoside inhibitor-binding pocket in the vicinity of the DNA polymerase domain. Both Ξ²-thujaplicinol and manicol failed to inhibit DNA-dependent DNA polymerase activity of HIV-1 RT at a concentration of 50 ΞΌM, suggesting that they are specific for the C-terminal RNase H domain, while surface plasmon resonance studies indicated that the inhibition was not due to intercalation of the analog into the nucleic acid substrate. Finally, we have demonstrated synergy between Ξ²-thujaplicinol and calanolide A, a nonnucleoside inhibitor of HIV-1 RT, raising the possibility that both enzymatic activities of HIV-1 RT can be simultaneously targeted

    Utilization of a deoxynucleoside diphosphate substrate by HIV reverse transcriptase

    Get PDF
    Background: Deoxynucleoside triphosphates (dNTPs) are the normal substrates for DNA sysnthesis is catalyzed by polymerases such as HIV-1 reverse transcriptase (RT). However, substantial amounts of deoxynucleoside diphosphates (dNDPs) are also present in the cell. Use of dNDPs in HIV-1 DNA sysnthesis could have significant implications for the efficacy of nucleoside RT inhibitors such as AZT which are first line therapeutics fro treatment of HIV infection. Our earlier work on HIV-1 reverse transcriptase (RT) suggested that the interaction between the Ξ³ phosphate of the incoming dNTP and RT residue K65 in the active site is not essential for dNTP insertion, implying that this polymerase may be able to insert dNPs in addition to dNTPs. Methodology/Principal Findings: We examined the ability of recombinant wild type (wt) and mutant RTs with substitutions at residue K65 to utilize a dNDP substrate in primer extension reactions. We found that wild type HIV-1 RT indeed catalyzes incorporation of dNDP substrates whereas RT with mutations of residue K645 were unable to catalyze this reaction. Wild type HIV-1 RT also catalyzed the reverse reaction, inorganic phosphate-dependent phosphorolysis. Nucleotide-mediated phosphorolytic removal of chain-terminating 3β€²-terminal nucleoside inhibitors such as AZT forms the basis of HIV-1 resistance to such drugs, and this removal is enhanced by thymidine analog mutations (TAMs). We found that both wt and TAM-containing RTs were able to catalyze Pi-mediated phosphorolysis of 3β€²-terminal AZT at physiological levels of Pi with an efficacy similar to that for ATP-dependent AZT-excision. Conclusion: We have identified two new catalytic function of HIV-1 RT, the use of dNDPs as substrates for DNA synthesis, and the use of Pi as substrate for phosphorolytic removal of primer 3β€²-terminal nucleotides. The ability to insert dNDPs has been documented for only one other DNA polymerase The RB69 DNA polymerase and the reverse reaction employing inorganic phosphate has not been documented for any DNA polymerase. Importantly, our results show that Pi-mediated phosphorolysis can contribute to AZT resistance and indicates that factors that influence HIV resistance to AZT are more complex than previously appreciated. Β© 2008 Garforth et al

    The Hepatitis B Virus Ribonuclease H Is Sensitive to Inhibitors of the Human Immunodeficiency Virus Ribonuclease H and Integrase Enzymes

    Get PDF
    Nucleos(t)ide analog therapy blocks DNA synthesis by the hepatitis B virus (HBV) reverse transcriptase and can control the infection, but treatment is life-long and has high costs and unpredictable long-term side effects. The profound suppression of HBV by the nucleos(t)ide analogs and their ability to cure some patients indicates that they can push HBV to the brink of extinction. Consequently, more patients could be cured by suppressing HBV replication further using a new drug in combination with the nucleos(t)ide analogs. The HBV ribonuclease H (RNAseH) is a logical drug target because it is the second of only two viral enzymes that are essential for viral replication, but it has not been exploited, primarily because it is very difficult to produce active enzyme. To address this difficulty, we expressed HBV genotype D and H RNAseHs in E. coli and enriched the enzymes by nickel-affinity chromatography. HBV RNAseH activity in the enriched lysates was characterized in preparation for drug screening. Twenty-one candidate HBV RNAseH inhibitors were identified using chemical structure-activity analyses based on inhibitors of the HIV RNAseH and integrase. Twelve anti-RNAseH and anti-integrase compounds inhibited the HBV RNAseH at 10 ΞΌM, the best compounds had low micromolar IC50 values against the RNAseH, and one compound inhibited HBV replication in tissue culture at 10 ΞΌM. Recombinant HBV genotype D RNAseH was more sensitive to inhibition than genotype H. This study demonstrates that recombinant HBV RNAseH suitable for low-throughput antiviral drug screening has been produced. The high percentage of compounds developed against the HIV RNAseH and integrase that were active against the HBV RNAseH indicates that the extensive drug design efforts against these HIV enzymes can guide anti-HBV RNAseH drug discovery. Finally, differential inhibition of HBV genotype D and H RNAseHs indicates that viral genetic variability will be a factor during drug development. Β© 2013 Tavis et al

    Virion Instability of Human Immunodeficiency Virus Type 1 Reverse Transcriptase (RT) Mutated in the Protease Cleavage Site between RT p51 and the RT RNase H Domain

    No full text
    Each of the human immunodeficiency virus type 1 (HIV-1) pol-encoded enzymes, protease (PR), reverse transcriptase (RT), and integrase (IN), is active only as a dimer (or higher-order oligomer in the case of IN), but only RT comprises subunits of different masses. RT is a heterodimer of 66-kDa and 51-kDa subunits. The latter is formed by HIV PR-catalyzed cleavage of p66 during virion maturation, resulting in the removal of the RNase H (RNH) domain of a p66 subunit. In order to study the apparent need for RT heterodimers in the context of the virion, we introduced a variety of mutations in the RT p51-RNH protease cleavage site of an infectious HIV-1 molecular clone. Surprisingly, rather than leading to virions with increased RT p66 content, most of the mutations resulted in significantly attenuated virus that contained greatly decreased levels of RT that in many cases was primarily p51 RT. IN levels were also reduced in several mutants. However, most mutants showed normal levels of the Pr160(gag-pol) precursor polyprotein, suggesting that reduced virion RT arose from proteolytic instability rather than decreased incorporation. Mutant virion p24 Gag levels were equivalent to wild type, indicating that Gag incorporation and processing were not affected. Repeated passage of MT-2 cells exposed to mutant viruses led to the appearance of virus with improved replication capacity; these virions contained normally processed RT at near-wild-type levels. These results imply that additional proteolytic processing of RT to the p66/p51 heterodimer is essential to provide proteolytic stability of RT during HIV-1 maturation
    • …
    corecore