1,983 research outputs found

    A novel miniature superconducting converter for 1 kA magnets

    Get PDF
    A miniature full-wave converter to control the current of a superconducting magnet is developed and tested in our institutes. Typical design values of the device are: AC voltage of 35 V, current of 7 A, and frequency 50-60 Hz; DC voltage o f f 0.2 V, and current of * 1 kA. An efficiency is better than 97% and a ‘cold’ volume is less than 1 litre. The rectification is achieved by means of thermally controlled superconducting switches. The high reliability of the device is ensured by means of a mechanical switch. The device provides an efficient way to a fine control of the magnet current

    Development of a 1 kA, 50 Hz Superconducting Converter

    Get PDF
    A single-phase, thermally switched superconducting power converter operating at mains frequency is being developed and tested by the authors. Typical design values of the device are: input voltage of 220 V; input current of 7 A; output voltage of 1 V; and output current of 1 kA. The average output power is about 750 VA, with an efficiency better than 96%. Test results of the full scale power converter while ramping up and down a superconducting magnet and a comparison with the theory are presented. The power converter will be installed as a part of a power supply system controlling the current of a separator magnet located in Ukraine for an iron ore recycling process

    Analysis of Wnt Signaling during \u3ci\u3eCaenorhabditis elegans\u3c/i\u3e Postembryonic Development

    Get PDF
    Wnts play a central role in the development of many cells and tissue types in all species studied to date. Like many other extracellular signaling pathways, secreted Wnt proteins are involved in many different processes; in C. elegans these include cell proliferation, differentiation, cell migration, control of cell polarity, axon outgrowth, and control of the stem cell niche. Perturbations in Wnt signaling are also key factors in cancer formation, and therefore of interest to oncobiologists. Wnts are secreted glycoproteins, which bind to Frizzled transmembrane receptors and signal either through, or independently of β-catenin. Both β-catenin-dependent (Wnt/β-catenin) and -independent pathways function during postembryonic development in C. elegans and allow Wnt researchers to explore aspects of Wnt signaling both in common with other organisms and unique to the nematode. Chapter 9 in Volume 2 discusses various processes controlled by Wnt signaling during C. elegans embryonic development; this chapter discusses Wnt-controlled processes that occur during postembryonic development, including an overview of methods used to observe their function

    Transcriptomic, Functional, and Network Analyses Reveal Novel Genes Involved in the Interaction between \u3ci\u3eCaenorhabditis elegans\u3c/i\u3e and \u3ci\u3eStenotrophomonas maltophilia\u3c/i\u3e

    Get PDF
    The bacterivorous nematode Caenorhabditis elegans is an excellent model for the study of innate immune responses to a variety of bacterial pathogens, including the emerging nosocomial bacterial pathogen Stenotrophomonas maltophilia. The study of this interaction has ecological and medical relevance as S. maltophilia is found in association with C. elegans and other nematodes in the wild and is an emerging opportunistic bacterial pathogen. We identified 393 genes that were differentially expressed when exposed to virulent and avirulent strains of S.maltophilia and an avirulent strain of E. coli. We then used a probabilistic functional gene network model (WormNet) to determine that 118 of the 393 differentially expressed genes formed an interacting network and identified a set of highly connected genes with eight or more predicted interactions.We hypothesized that these highly connected genes might play an important role in the defense against S. maltophila and found that mutations of six of seven highly connected genes have a significant effect on nematode survival in response to these bacteria. Of these genes, C48B4.1, mpk-2, cpr-4, clec-67, and lys-6 are needed for combating the virulent S. maltophilia JCMS strain, while dod-22 was solely involved in response to the avirulent S. maltophilia K279a strain. We further found that dod-22 and clec-67 were up regulated in response to JCMS vs. K279a, while C48B4.1, mpk-2, cpr-4, and lys-6 were down regulated. Only dod-22 had a documented role in innate immunity, which demonstrates the merit of our approach in the identification of novel genes that are involved in combating S. maltophilia infection

    Effect of Prey Richness on a Consumer’s Intrinsic Growth Rate

    Get PDF
    The intrinsic growth rate of nonselective microbivores increases asymptotically with increasing prey biomass, but we do not know how intrinsic growth rate is affected by prey richness. The objective of this experiment was to determine the effect of prey richness on the growth kinetics of nematode predators while grazing on mixed bacterial lawns. We found that the intrinsic growth rate of Caenorhabditis elegans in laboratory culture increased asymptotically with prey richness. The mechanism of this pattern was primarily due to the best available prey species in the mixture: the intrinsic growth rate of the consumer feeding on a mixture of prey was approximately equal to the intrinsic growth rate of the predator when feeding on the single best prey in monoculture. This was analogous to the selection effect observed in biodiversity-ecosystem functioning relationships. Generation time, and not reproductive output, was the life history trait component that was most consistent with the pattern of intrinsic growth rate. Our results suggest that in order to link invertebrate consumers’ growth rates to their microbial species composition in the field, it will be necessary to determine the ability of microbivorous invertebrates to selectively forage in natural environments and to better understand the microscale distribution of microbial communities in their natural environments

    The Nuclear X-Ray Emission-line Structure in NGC 2992 Revealed by

    Get PDF
    We present the narrow emission-line structure revealed by a 135 ks Chandra observation of Seyfert galaxy NGC 2992, using the High Energy Transmission Grating Spectrometer. The source was observed in an historically low-flux state. Using a Bayesian Block search technique, we detected neutral Si Kα and S Kα fluorescence and two additional lines that are consistent with redshifted, ionized Si emission. The latter two features are indicative of a photoionized outflow with a velocity of ∼ 2500 km s⁻¹. We also observed prominent, unresolved line emission at the rest energy of Fe Kα, with a 90% confidence FWHM velocity width of < 2000 km s⁻¹ ( < 2800 km s⁻¹) and equivalent width of 406-1148 eV (288-858 eV) when broad Fe Kα line emission, as detected by Suzaku, was (was not) included in the model

    Mice Transgenic for the Human Carcinoembryonic Antigen Gene Maintain Its Spatiotemporal Expression Pattern

    Get PDF
    The tumor marker carcinoembryonic antigen (CEA) is predominantly expressed in epithelial cells along the gastrointestinal tract and in a variety of adenocarcinomas. As a basis for investigating its in vivo regulation and for establishing an animal model for tumor immunotherapy, transgenic mice were generated with a 33-kilobase cosmid clone insert containing the complete human CEA gene and flanking sequences. CEA was found in the tongue, esophagus, stomach, small intestine, cecum, colon, and trachea and at low levels in the lung, testis, and uterus of adult mice of independent transgenic strains. CEA was first detected at day 10.5 of embryonic development (embryonic day 10.5) in primary trophoblast giant cells and was found in the developing gut, urethra, trachea, lung, and nucleus pulposus of the vertebral column from embryonic day 14.5 onwards. From embryonic day 16.5 CEA was also visible in the nasal mucosa and tongue. Because this spatiotemporal expression pattern correlates well with that known for humans, it follows that the transferred genomic region contains all of the regulatory elements required for the correct expression of CEA. Furthermore, although mice apparently lack an endogenous CEA gene, the entire repertoire of transcription factors necessary for correct expression of the CEA transgene is conserved between mice and humans. After tumor induction, these immunocompetent mice will serve as a model for optimizing various forms of immunotherapy, using CEA as a target antigen

    NEXT Long-Duration Test Neutralizer Performance and Erosion Characteristics

    Get PDF
    The NASA's Evolutionary Xenon Thruster (NEXT) program is developing the next-generation ion propulsion system with significant enhancements beyond the state-of-the-art to provide future NASA science missions with enhanced capabilities at a low total development cost. A Long-Duration Test (LDT) was initiated in June 2005, to verify the NEXT propellant throughput capability to a qualification-level of 450 kg, 1.5 times the anticipated throughput requirement of 300 kg per thruster based on mission analyses. As of September 2, 2009, the thruster has accumulated 24,400 hr of operation with extensive durations at the following input powers: 6.9, 4.7, 1.1, and 0.5 kW. The thruster has processed 434 kg of xenon, surpassing the NASA Solar Technology Application Readiness (NSTAR) program thruster propellant throughput demonstrated during the extended life testing of the Deep Space 1 flight spare ion thruster and approaching the NEXT development qualification throughput goal of 450 kg. The NEXT LDT has demonstrated a total impulse of 16.1 10(exp 6zzz0 N s; the highest total impulse ever demonstrated by an ion thruster. A reduction in neutralizer flow margin has been the only appreciable source of thruster performance degradation. The behavior of the neutralizer is not easily predicted due to both erosion and deposition observed in previous wear tests. Spot-to-plume mode transition flow data and in-situ erosion results for the LDT neutralizer are discussed. This loss of flow margin has been addressed through a combination of a design change in the prototype-model neutralizer to increase flow margin at low emission current and to update the NEXT throttle table to ensure adequate flow margin as a function of propellant throughput processed. The new throttle table will be used for future LDT operations. The performance of the NEXT LDT neutralizer is consistent with that observed for long-life hollow cathodes. The neutralizer life-limiting failure modes are progressing as expected and the neutralizer data indicate none of the neutralizer failures are imminent

    NASA's Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 736 kg of Propellant Throughput

    Get PDF
    The NASA s Evolutionary Xenon Thruster (NEXT) program is developing the next-generation solar-electric ion propulsion system with significant enhancements beyond the state-of-the-art NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) ion propulsion system to provide future NASA science missions with enhanced mission capabilities. A Long-Duration Test (LDT) was initiated in June 2005 to validate the thruster service life modeling and to qualify the thruster propellant throughput capability. The thruster has set electric propulsion records for the longest operating duration, highest propellant throughput, and most total impulse demonstrated. At the time of this publication, the NEXT LDT has surpassed 42,100 h of operation, processed more than 736 kg of xenon propellant, and demonstrated greater than 28.1 MN s total impulse. Thruster performance has been steady with negligible degradation. The NEXT thruster design has mitigated several lifetime limiting mechanisms encountered in the NSTAR design, including the NSTAR first failure mode, thereby drastically improving thruster capabilities. Component erosion rates and the progression of the predicted life-limiting erosion mechanism for the thruster compare favorably to pretest predictions based upon semi-empirical ion thruster models used in the thruster service life assessment. Service life model validation has been accomplished by the NEXT LDT. Assuming full-power operation until test article failure, the models and extrapolated erosion data predict penetration of the accelerator grid grooves after more than 45,000 hours of operation while processing over 800 kg of xenon propellant. Thruster failure due to degradation of the accelerator grid structural integrity is expected after groove penetration
    corecore