52 research outputs found

    Bayesian Optimization with Unknown Constraints

    Full text link
    Recent work on Bayesian optimization has shown its effectiveness in global optimization of difficult black-box objective functions. Many real-world optimization problems of interest also have constraints which are unknown a priori. In this paper, we study Bayesian optimization for constrained problems in the general case that noise may be present in the constraint functions, and the objective and constraints may be evaluated independently. We provide motivating practical examples, and present a general framework to solve such problems. We demonstrate the effectiveness of our approach on optimizing the performance of online latent Dirichlet allocation subject to topic sparsity constraints, tuning a neural network given test-time memory constraints, and optimizing Hamiltonian Monte Carlo to achieve maximal effectiveness in a fixed time, subject to passing standard convergence diagnostics.Comment: 14 pages, 3 figure

    A General Framework for Constrained Bayesian Optimization using Information-based Search

    Get PDF
    This is the author accepted manuscript. The final version is available from MIT Press via https://dl.acm.org/citation.cfm?id=2946645.3053442.We present an information-theoretic framework for solving global black-box optimization problems that also have black-box constraints. Of particular interest to us is to efficiently solve problems with decoupled constraints, in which subsets of the objective and constraint functions may be evaluated independently. For example, when the objective is evaluated on a CPU and the constraints are evaluated independently on a GPU. These problems require an acquisition function that can be separated into the contributions of the individual function evaluations. We develop one such acquisition function and call it Predictive Entropy Search with Constraints (PESC). PESC is an approximation to the expected information gain criterion and it compares favorably to alternative approaches based on improvement in several synthetic and real-world problems. In addition to this, we consider problems with a mix of functions that are fast and slow to evaluate. These problems require balancing the amount of time spent in the meta-computation of PESC and in the actual evaluation of the target objective. We take a bounded rationality approach and develop a partial update for PESC which trades off accuracy against speed. We then propose a method for adaptively switching between the partial and full updates for PESC. This allows us to interpolate between versions of PESC that are efficient in terms of function evaluations and those that are efficient in terms of wall-clock time. Overall, we demonstrate that PESC is an effective algorithm that provides a promising direction towards a unified solution for constrained Bayesian optimization.José Miguel Hernández-Lobato acknowledges support from the Rafael del Pino Foundation. Zoubin Ghahramani acknowledges support from Google Focused Research Award and EPSRC grant EP/I036575/1. Matthew W. Hoffman acknowledges support from EPSRC grant EP/J012300/1

    The Evolution of the Anopheles 16 Genomes Project

    Get PDF
    We report the imminent completion of a set of reference genome assemblies for 16 species of Anopheles mosquitoes. In addition to providing a generally useful resource for comparative genomic analyses, these genome sequences will greatly facilitate exploration of the capacity exhibited by some Anopheline mosquito species to serve as vectors for malaria parasites. A community analysis project will commence soon to perform a thorough comparative genomic investigation of these newly sequenced genomes. Completion of this project via the use of short next-generation sequence reads required innovation in both the bioinformatic and laboratory realms, and the resulting knowledge gained could prove useful for genome sequencing projects targeting other unconventional genomes

    Filament Depolymerization Can Explain Chromosome Pulling during Bacterial Mitosis

    Get PDF
    Chromosome segregation is fundamental to all cells, but the force-generating mechanisms underlying chromosome translocation in bacteria remain mysterious. Caulobacter crescentus utilizes a depolymerization-driven process in which a ParA protein structure elongates from the new cell pole, binds to a ParB-decorated chromosome, and then retracts via disassembly, pulling the chromosome across the cell. This poses the question of how a depolymerizing structure can robustly pull the chromosome that disassembles it. We perform Brownian dynamics simulations with a simple, physically consistent model of the ParABS system. The simulations suggest that the mechanism of translocation is “self-diffusiophoretic”: by disassembling ParA, ParB generates a ParA concentration gradient so that the ParA concentration is higher in front of the chromosome than behind it. Since the chromosome is attracted to ParA via ParB, it moves up the ParA gradient and across the cell. We find that translocation is most robust when ParB binds side-on to ParA filaments. In this case, robust translocation occurs over a wide parameter range and is controlled by a single dimensionless quantity: the product of the rate of ParA disassembly and a characteristic relaxation time of the chromosome. This time scale measures the time it takes for the chromosome to recover its average shape after it is has been pulled. Our results suggest explanations for observed phenomena such as segregation failure, filament-length-dependent translocation velocity, and chromosomal compaction

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource
    corecore