1,218 research outputs found

    Oxidation protection coatings for polymers

    Get PDF
    A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about four volume percent polymer to provide flexibility

    Optical and scratch resistant properties of diamondlike carbon films deposited with single and dual ion beams

    Get PDF
    Amorphous diamondlike carbon (DLC) films were deposited using both single and dual ion beam techniques utilizing filament and hollow cathode ion sources. Continuous DLC films up to 3000 A thick were deposited on fused quartz plates. Ion beam process parameters were varied in an effort to create hard, clear films. Total DLC film absorption over visible wavelengths was obtained using a Perkin-Elmer spectrophotometer. An ellipsometer, with an Ar-He laser (wavelength 6328 A) was used to determine index of refraction for the DLC films. Scratch resistance and frictional and adherence properties were determined for select films. Applications for these films range from military to the ophthalmic industries

    Evidence from Patents and Patent Citations on the Impact of NASA and Other Federal Labs on Commercial Innovation

    Get PDF
    We explore the commercialization of government-generated technology by analyzing patents awarded to the U.S. government and the citations to those patents from subsequent patents. We use information on citations to federal patents in two ways: (1) to compare the average technological impact of NASA patents, other Federal' patents, and a random sample of all patents using measures of importance' and generality;' and (2) to trace the geographic location of commercial development by focusing on the location of inventors who cite NASA and other federal patents. We find, first, that the evidence is consistent with increased effort to commercialize federal lab technology generally and NASA specifically. The data reveal a striking NASA golden age' during the second half of the 1970s which remains a puzzle. Second, spillovers are concentrated within a federal lab complex of states representing agglomerations of labs and companies. The technology complex links five NASA states through patent citations: California, Texas, Ohio, DC/Virginia-Maryland, and Alabama. Third, qualitative evidence provides some support for the use of patent citations as proxies for both technological impact and knowledge spillovers.

    Total hemispherical emittance measured at high temperatures by the calorimetric method

    Get PDF
    A calorimetric vacuum emissometer (CVE) capable of measuring total hemispherical emittance of surfaces at elevated temperatures was designed, built, and tested. Several materials with a wide range of emittances were measured in the CVE between 773 to 923 K. These results were compared to values calculated from spectral emittance curves measured in a room temperature Hohlraum reflectometer and in an open-air elevated temperature emissometer. The results differed by as much as 0.2 for some materials but were in closer agreement for the more highly-emitting, diffuse-reflecting samples. The differences were attributed to temperature, atmospheric, and directional effects, and errors in the Hohlraum and emissometer measurements (plus or minus 5 percent). The probable error of the CVE measurements was typically less than 1 percent

    Quantum Moduli Spaces of N=1N=1 String Theories

    Get PDF
    Generically, string models with N=1N=1 supersymmetry are not expected to have moduli beyond perturbation theory; stringy non-perturbative effects as well as low energy field-theoretic phenomena such as gluino condensation will lift any flat directions. In this note, we describe models where some subspace of the moduli space survives non-perturbatively. Discrete RR symmetries forbid any inherently stringy effects, and dynamical considerations control the field-theoretic effects. The surviving subspace is a space of high symmetry; the system is attracted to this subspace by a potential which we compute. Models of this type may be useful for considerations of duality and raise troubling cosmological questions about string theory. Our considerations also suggest a mechanism for fixing the expectation value of the dilaton.Comment: 26 pages; uses harvmac. Footnote re fixing dilaton adde

    High temperature radiator materials for applications in the low Earth orbital environment

    Get PDF
    Radiators must be constructed of materials which have high emittance in order to efficiently radiate heat from high temperature space power systems. In addition, if these radiators are to be used for applications in the low Earth orbital environment, they must not be detrimentally affected by exposure to atomic oxygen. Four materials selected as candidate radiator materials (304 stainless steel, copper, titanium-6% aluminum-4% vanadium (Ti-6%Al-4%V), and niobium-1% zirconium (Nb-1%Zr)) were surface modified by acid etching, heat treating, abrading, sputter texturing, electrochemical etching, and combinations of the above in order to improve their emittance. Combination treatment techniques with heat treating as the second treatment provided about a factor of two improvement in emittance for 304 stainless steel, Ti-6%Al-4%V, and Nb-1%Zr. A factor of three improvement in emittance occurred for discharge chamber sputter textured copper. Exposure to atomic oxygen in an RF plasma asher did not significantly change the emittance of those samples that had been heat treated as part of their texturing process. An evaluation of oxygen penetration is needed to understand how oxidation affects the mechanical properties of these materials when heat treated

    A latitudinal cline in the Chinook salmon (Oncorhynchus tshawytscha) Clock gene: evidence for selection on PolyQ length variants

    Get PDF
    A critical seasonal event for anadromous Chinook salmon (Oncorhynchus tshawytscha) is the time at which adults migrate from the ocean to breed in freshwater. We investigated whether allelic variation at the circadian rhythm genes, OtsClock1a and OtsClock1b, underlies genetic control of migration timing among 42 populations in North America. We identified eight length variants of the functionally important polyglutamine repeat motif (PolyQ) of OtsClock1b while OtsClock1a PolyQ was highly conserved. We found evidence of a latitudinal cline in average allele length and frequency of the two most common OtsClock1b alleles. The shorter 335 bp allele increases in frequency with decreasing latitude while the longer 359 bp allele increases in frequency at higher latitudes. Comparison to 13 microsatellite loci showed that 335 and 359 bp deviate significantly from neutral expectations. Furthermore, a hierarchical gene diversity analysis based on OtsClock1b PolyQ variation revealed that run timing explains 40.9 per cent of the overall genetic variance among populations. By contrast, an analysis based on 13 microsatellite loci showed that run timing explains only 13.2 per cent of the overall genetic variance. Our findings suggest that length polymorphisms in OtsClock1b PolyQ may be maintained by selection and reflect an adaptation to ecological factors correlated with latitude, such as the seasonally changing day length

    Flexible fluoropolymer filled protective coatings

    Get PDF
    Metal oxide films such as SiO2 are known to provide an effective barrier to the transport of moisture as well as gaseous species through polymeric films. Such thin film coatings have a tendency to crack upon flexure of the polymeric substrate. Sputter co-deposition of SiO2 with 4 to 15 percent fluoropolymers was demonstrated to produce thin films with glass-like barrier properties that have significant increases in strain to failure over pure glass films which improves their tolerance to flexure on polymeric substrates. Deposition techniques capable of producing these films on polymeric substrates are suitable for durable food packaging and oxidation/corrosion protection applications

    Is There A String Theory Landscape

    Full text link
    We examine recent claims of a large set of flux compactification solutions of string theory. We conclude that the arguments for AdS solutions are plausible. The analysis of meta-stable dS solutions inevitably leads to situations where long distance effective field theory breaks down. We then examine whether these solutions are likely to lead to a description of the real world. We conclude that one must invoke a strong version of the anthropic principle. We explain why it is likely that this leads to a prediction of low energy supersymmetry breaking, but that many features of anthropically selected flux compactifications are likely to disagree with experiment.Comment: 39 pages, Latex, ``Terminology surrounding the anthropic principle revised to conform with accepted usage. More history of the anthropic principle included. Various references added.

    Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    Get PDF
    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years
    corecore