4,139 research outputs found

    Structure and Response in the World Trade Network

    Full text link
    We examine how the structure of the world trade network has been shaped by globalization and recessions over the last 40 years. We show that by treating the world trade network as an evolving system, theory predicts the trade network is more sensitive to evolutionary shocks and recovers more slowly from them now than it did 40 years ago, due to structural changes in the world trade network induced by globalization. We also show that recession-induced change to the world trade network leads to an \emph{increased} hierarchical structure of the global trade network for a few years after the recession.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    How Not to Use the Involuntary Bankruptcy Process

    Get PDF
    This Article evaluates the issues arising under 11 U.S.C. § 303, which governs involuntary bankruptcies. The Authors being by presenting an overview of commencing an involuntary bankruptcy case, as highlighted by the lengthy litigation inspired by Rosenberg v. DVI Receivable XVII, LLC and its dismissal. The Article concludes that the current state of § 303 can open additional litigation replete with costs, awards, fees, and other bad-faith damages, and creditors should exercise caution before pursuing involuntary bankruptcy, especially it it’s likely to fair for meeting the statutory requirements

    Medium effects in K^+ nucleus interaction from consistent analysis of integral and differential cross sections

    Full text link
    Self consistency in the analysis of transmission measurements for K^+ on several nuclei in the momentum range of 500-700 MeV/c is achieved with a "t_{eff}(rho)rho" potential and new results are derived for total cross sections. The imaginary part of the t_{eff} amplitude is found to increase linearly with the average nuclear density in excess of a threshold value. This phenomenological density dependence of the K^+ nucleus optical potential also gives rise to good agreement with recent measurements of differential cross sections for elastic scattering of 715 MeV/c K^+ by Li^6 and C.Comment: 11 pages, RevTeX, 2 Postscript figures, submitted Phys. Lett.

    Transcription factor interactions explain the context-dependent activity of CRX binding sites

    Get PDF
    The effects of transcription factor binding sites (TFBSs) on the activity of a cis-regulatory element (CRE) depend on the local sequence context. In rod photoreceptors, binding sites for the transcription factor (TF) Cone-rod homeobox (CRX) occur in both enhancers and silencers, but the sequence context that determines whether CRX binding sites contribute to activation or repression of transcription is not understood. To investigate the context-dependent activity of CRX sites, we fit neural network-based models to the activities of synthetic CREs composed of photoreceptor TFBSs. The models revealed that CRX binding sites consistently make positive, independent contributions to CRE activity, while negative homotypic interactions between sites cause CREs composed of multiple CRX sites to function as silencers. The effects of negative homotypic interactions can be overcome by the presence of other TFBSs that either interact cooperatively with CRX sites or make independent positive contributions to activity. The context-dependent activity of CRX sites is thus determined by the balance between positive heterotypic interactions, independent contributions of TFBSs, and negative homotypic interactions. Our findings explain observed patterns of activity among genomic CRX-bound enhancers and silencers, and suggest that enhancers may require diverse TFBSs to overcome negative homotypic interactions between TFBSs

    Mechanically Stabilized Tetrathiafulvalene Radical Dimers

    Get PDF
    Two donor−acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4′-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV−vis−NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers
    corecore