12,545 research outputs found
Workshop - Amundsen Sea Embayment Tectonic and Glacial History - Programme and Abstracts
Overall Objective: Review existing data and identify priorities for future geoscience research (terrestrial, marine and airborne) in the Amundsen Sea embayment (ASE) region required to develop a better understanding of the past, present and future behaviour of this sector of the West Antarctic Ice Sheet (WAIS).
Background: The ASE is the most rapidly changing sector of the WAIS and contains enough ice to raise global sea level by 1.2 m. Over the past few years considerable efforts have been made to acquire new data to improve knowledge of the geological structure, subglacial topography, continental shelf bathymetry and glacial history of this remote region. In this workshop we aim to review the current state of knowledge on the tectonic and glacial evolution of the Amundsen Sea embayment. Particular emphasis will be placed on work that will improve boundary conditions for ice sheet models (e.g. subglacial topography, shelf bathymetry, palaeotopography, heat flow and substrate types) and provide palaeo-data against which model outputs can be compared. There will also be a focus on plans and targets for future scientific drilling that will reveal the history of this sector of the WAIS and its sensitivity to major climate changes
An extended Hubbard model with ring exchange: a route to a non-Abelian topological phase
We propose an extended Hubbard model on a 2D Kagome lattice with an
additional ring-exchange term. The particles can be either bosons or spinless
fermions . At a special filling fraction of 1/6 the model is analyzed in the
lowest non-vanishing order of perturbation theory. Such ``undoped'' model is
closely related to the Quantum Dimer Model. We show how to arrive at an exactly
soluble point whose ground state manifold is the extensively degenerate
``d-isotopy space'', a necessary precondition for for a certain type of
non-Abelian topological order. Near the ``special'' values, , this space is expected to collapse to a stable topological phase
with anyonic excitations closely related to SU(2) Chern-Simons theory at level
k.Comment: 4 pages, 2 colour figures, submitted to PRL. For an extended
treatment of a more general family of models see cond-mat/030912
On quasi-local Hamiltonians in General Relativity
We analyse the definition of quasi-local energy in GR based on a Hamiltonian
analysis of the Einstein-Hilbert action initiated by Brown-York. The role of
the constraint equations, in particular the Hamiltonian constraint on the
timelike boundary, neglected in previous studies, is emphasized here. We argue
that a consistent definition of quasi-local energy in GR requires, at a
minimum, a framework based on the (currently unknown) geometric well-posedness
of the initial boundary value problem for the Einstein equations.Comment: 9 page
The Space Motion of the Globular Cluster NGC 6397
As a by-product of high-precision, ultra-deep stellar photometry in the
Galactic globular cluster NGC 6397 with the Hubble Space Telescope, we are able
to measure a large population of background galaxies whose images are nearly
point-like. These provide an extragalactic reference frame of unprecedented
accuracy, relative to which we measure the most accurate absolute proper motion
ever determined for a globular cluster. We find mu_alpha = 3.56 +/- 0.04 mas/yr
and mu_delta = -17.34 +/- 0.04 mas/yr. We note that the formal statistical
errors quoted for the proper motion of NGC 6397 do not include possible
unavoidable sources of systematic errors, such as cluster rotation. These are
very unlikely to exceed a few percent. We use this new proper motion to
calculate NGC 6397's UVW space velocity and its orbit around the Milky Way, and
find that the cluster has made frequent passages through the Galactic disk.Comment: 5 pages including 3 figures, accepted for publication in the
Astrophysical Journal Letters. Very minor changes in V2. typos fixe
The White Dwarf Cooling Sequence of NGC6397
We present the results of a deep Hubble Space Telescope (HST) exposure of the
nearby globular cluster NGC6397, focussing attention on the cluster's white
dwarf cooling sequence. This sequence is shown to extend over 5 magnitudes in
depth, with an apparent cutoff at magnitude F814W=27.6. We demonstrate, using
both artificial star tests and the detectability of background galaxies at
fainter magnitudes, that the cutoff is real and represents the truncation of
the white dwarf luminosity function in this cluster. We perform a detailed
comparison between cooling models and the observed distribution of white dwarfs
in colour and magnitude, taking into account uncertainties in distance,
extinction, white dwarf mass, progenitor lifetimes, binarity and cooling model
uncertainties. After marginalising over these variables, we obtain values for
the cluster distance modulus and age of \mu_0 = 12.02 \pm 0.06 and T_c = 11.47
\pm 0.47Gyr (95% confidence limits). Our inferred distance and white dwarf
initial-final mass relations are in good agreement with other independent
determinations, and the cluster age is consistent with, but more precise than,
prior determinations made using the main sequence turnoff method. In
particular, within the context of the currently accepted \Lambda CDM
cosmological model, this age places the formation of NGC6397 at a redshift z=3,
at a time when the cosmological star formation rate was approaching its peak.Comment: 56 pages, 30 figure
Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration
Radio metric data from the Pioneer 10/11, Galileo, and Ulysses spacecraft
indicate an apparent anomalous, constant, acceleration acting on the spacecraft
with a magnitude cm/s, directed towards the Sun.
Two independent codes and physical strategies have been used to analyze the
data. A number of potential causes have been ruled out. We discuss future
kinematic tests and possible origins of the signal.Comment: Revtex, 4 pages and 1 figure. Minor changes for publicatio
Fitting Correlated Hadron Mass Spectrum Data
We discuss fitting hadronic Green functions versus time to extract mass
values in quenched lattice QCD. These data are themselves strongly correlated
in . With only a limited number of data samples, the method of minimising
correlated is unreliable. We explore several methods of modelling the
correlations among the data set by a few parameters which then give a stable
and sensible fit even if the data sample is small. In particular these models
give a reliable estimate of the goodness of fit.Comment: 14 pages, Latex text, followed by 3 postscript figures in
self-unpacking file. Also available at
ftp://suna.amtp.liv.ac.uk/pub/cmi/corfit
Drag on particles in a nematic suspension by a moving nematic-isotropic interface
We report the first clear demonstration of drag on colloidal particles by a moving nematic-isotropic
interface. The balance of forces explains our observation of periodic, strip-like structures that are produced by the movement of these particles
- …
