221 research outputs found
Covariant boost and structure functions of baryons in Gross-Neveu models
Baryons in the large N limit of two-dimensional Gross-Neveu models are
reconsidered. The time-dependent Dirac-Hartree-Fock approach is used to boost a
baryon to any inertial frame and shown to yield the covariant energy-momentum
relation. Momentum distributions are computed exactly in arbitrary frames and
used to interpolate between the rest frame and the infinite momentum frame,
where they are related to structure functions. Effects from the Dirac sea
depend sensitively on the occupation fraction of the valence level and the bare
fermion mass and do not vanish at infinite momentum. In the case of the kink
baryon, they even lead to divergent quark and antiquark structure functions at
x=0.Comment: 13 pages, 12 figures; v2: minor correction
How to get from imaginary to real chemical potential
Using the exactly solvable Gross-Neveu model as theoretical laboratory, we
analyse in detail the relationship between a relativistic quantum field theory
at real and imaginary chemical potential. We find that one can retrieve the
full information about the phase diagram of the theory from an imaginary
chemical potential calculation. The prerequisite is to evaluate and
analytically continue the effective potential for the chiral order parameter,
rather than thermodynamic observables or phase boundaries. In the case of an
inhomogeneous phase, one needs to compute the full effective action, a
functional of the space-dependent order parameter, at imaginary chemical
potential.Comment: revtex, 9 pages, 10 figures; v2: add more references, modify
concluding sectio
From non-degenerate conducting polymers to dense matter in the massive Gross-Neveu model
Using results from the theory of non-degenerate conducting polymers like
cis-polyacetylene, we generalize our previous work on dense baryonic matter and
the soliton crystal in the massless Gross-Neveu model to finite bare fermion
mass. In the large N limit, the exact crystal ground state can be constructed
analytically, in close analogy to the bipolaron lattice in polymers. These
findings are contrasted to the standard scenario with homogeneous phases only
and a first order phase transition at a critical chemical potential.Comment: 12 pages, 7 figures, revtex; v2: improved readability, following
advice of PRD referee; accepted for publicatio
Universal point contact resistance between thin-film superconductors
A system comprising two superconducting thin films connected by a point
contact is considered. The contact resistance is calculated as a function of
temperature and film geometry, and is found to vanish rapidly with temperature,
according to a universal, nearly activated form, becoming strictly zero only at
zero temperature. At the lowest temperatures, the activation barrier is set
primarily by the superfluid stiffness in the films, and displays only a weak
(i.e., logarithmic) temperature dependence. The Josephson effect is thus
destroyed, albeit only weakly, as a consequence of the power-law-correlated
superconducting fluctuations present in the films below the
Berezinskii-Kosterlitz-Thouless transition temperature. The behavior of the
resistance is discussed, both in various limiting regimes and as it crosses
over between these regimes. Details are presented of a minimal model of the
films and the contact, and of the calculation of the resistance. A formulation
in terms of quantum phase-slip events is employed, which is natural and
effective in the limit of a good contact. However, it is also shown to be
effective even when the contact is poor and is, indeed, indispensable, as the
system always behaves as if it were in the good-contact limit at low enough
temperature. A simple mechanical analogy is introduced to provide some
heuristic understanding of the nearly-activated temperature dependence of the
resistance. Prospects for experimental tests of the predicted behavior are
discussed, and numerical estimates relevant to anticipated experimental
settings are provided.Comment: 29 pages (single column format), 7 figure
Phase structure of the massive chiral Gross-Neveu model from Hartree-Fock
The phase diagram of the massive chiral Gross-Neveu model (the massive
Nambu-Jona-Lasinio model in 1+1 dimensions) is constructed. In the large N
limit, the Hartree-Fock approach can be used. We find numerically a chiral
crystal phase separated from a massive Fermi gas phase by a 1st order
transition. Using perturbation theory, we also construct the critical sheet
where the homogeneous phase becomes unstable in a 2nd order transition. A
tricritical curve is located. The phase diagram is mapped out as a function of
fermion mass, chemical potential and temperature and compared with the one of
the discrete chiral Gross-Neveu model. As a by-product, we illustrate the
crystal structure of matter at zero temperature for various densities and
fermion masses.Comment: 12 pages, 16 figure
Revised Phase Diagram of the Gross-Neveu Model
We confirm earlier hints that the conventional phase diagram of the discrete
chiral Gross-Neveu model in the large N limit is deficient at non-zero chemical
potential. We present the corrected phase diagram constructed in mean field
theory. It has three different phases, including a kink-antikink crystal phase.
All transitions are second order. The driving mechanism for the new structure
of baryonic matter in the Gross-Neveu model is an Overhauser type instability
with gap formation at the Fermi surface.Comment: Revtex, 12 pages, 15 figures; v2: Axis labelling in Fig. 9 correcte
ADCY5 gene expression in adipose tissue is related to obesity in men and mice
Genome wide association studies revealed an association of the single nucleotide polymorphism rs11708067 within the ADCY5 gene—encoding adenylate cyclase 5—with increased type 2 diabetes (T2D) risk and higher fasting glucose. However, it remains unclear whether the association between ADCY5 variants and glycemic traits may involve adipose tissue (AT) related mechanisms. We therefore tested the hypothesis that ADCY5 mRNA expression in human and mouse AT is related to obesity, fat distribution, T2D in humans and high fat diet (HFD) in mice. We measured ADCY5 mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 244 individuals with a wide range of body weight and parameters of hyperglycemia, which have been genotyped for rs11708067. In addition, AT ADCY5 mRNA was assessed in C57BL/6NTac which underwent a 10 weeks standard
chow (n = 6) or high fat diet (HFD, n = 6). In humans, visceral ADCY5 expression is significantly higher in obese compared to lean individuals. ADCY5 expression correlates with BMI, body fat mass, circulating leptin, fat distribution, waist and hip circumference, but not with fasting plasma glucose and HbA1c. Adcy5 expression in mouse AT is significantly
higher after a HFD compared to chow (p<0.05). Importantly, rs11708067 is not associated with ADCY5 mRNA expression levels in either fat depot in any of the genetic models tested. Our results suggest that changes in AT ADCY5 expression are related to obesity and fat distribution, but not with impaired glucose metabolism and T2D. However, altered ADCY5 expression in AT does not seem to be the mechanism underlying the association between rs11708067 and increased T2D risk
Circulating cell adhesion molecules in metabolically healthy obesity
Background/Objectives
People with metabolically healthy obesity (MHO) may still have an increased risk for cardiovascular mortality compared to metabolically healthy lean (MHL) individuals. However, the mechanisms linking obesity to cardiovascular diseases are not entirely understood. We therefore tested the hypothesis that circulating cell adhesion molecules (CAMs) are higher in MHO compared to MHL individuals.
Subjects/Methods
Serum concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), E-selectin and P-selectin were measured in age- and sex-matched groups of MHL (n = 32), MHO categorized into BMI-matched insulin sensitive (IS, n = 32) or insulin resistant (IR) obesity (n = 32) and people with metabolically unhealthy obesity (MUO, n = 32).
Results
Indeed, individuals with MHO have significantly higher sICAM-1, E-selectin, and P-selectin serum concentrations compared to MHL people. However, these CAMs are still significantly lower in IS compared to IR MHO. There was no difference between the groups in sVCAM-1 serum concentrations. Compared to all other groups, circulating adhesion molecules were significantly higher in individuals with MUO.
Conclusions
These findings suggest that obesity-related increased cardiovascular risk is reflected and may be mediated by significantly higher CAMs. The mechanisms causing elevated adhesion molecules even in the absence of overt cardio-metabolic risk factors and whether circulating CAMs could predict cardiovascular events need to be explored
No First-Order Phase Transition in the Gross-Neveu Model?
Within a variational calculation we investigate the role of baryons for the
structure of dense matter in the Gross-Neveu model. We construct a trial ground
state at finite baryon density which breaks translational invariance. Its
scalar potential interpolates between widely spaced kinks and antikinks at low
density and the value zero at infinite density. Its energy is lower than the
one of the standard Fermi gas at all densities considered. This suggests that
the discrete gamma_5 symmetry of the Gross-Neveu model does not get restored in
a first order phase transition at finite density, at variance with common
wisdom.Comment: 16 pages, 7 figures, LaTe
Recommended from our members
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
The prevalence of obesity and type 2-diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the Glut4-glucose transporter and alterations in adipose-Glut4 expression or function regulate systemic insulin sensitivity. Downregulation of adipose tissue-Glut4 occurs early in diabetes development. Here we report that adipose tissue-Glut4 regulates the expression of carbohydrate responsive-element binding protein (ChREBP), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose-ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We discovered a new mechanism for glucose-regulation of ChREBP: Glucose-mediated activation of the canonical ChREBP isoform (ChREBPα) induces expression of a novel, potent isoform (ChREBPβ) that is transcribed from an alternative promoter. ChREBPβ expression in human adipose tissue predicts insulin sensitivity indicating that it may be an effective target for treating diabetes
- …