4,334 research outputs found
Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) Observed Feeding on Chamaesaracha sp. in Eastern Colorado.
Egg, larval, and adult life stages of Colorado potato beetle, Leptinotarsa decemlineata (Say), were observed feeding on or attached to a previously undocumented host plant belonging to the genus Chamaesaracha in eastern Colorado on July 2017. At one site, L. decemlineata were more abundant on Chamaesaracha sp. than the accepted ancestral host plant, Solanum rostratum (Dunal). While future studies should confirm the ancestral status of the observed L. decemlineata and suitability of Chamaesaracha sp. for completion of development, our observations suggest a need for further characterization of the ancestral host range of L. decemlineata
Environmental Quenching of Low-Mass Field Galaxies
In the local Universe, there is a strong division in the star-forming
properties of low-mass galaxies, with star formation largely ubiquitous amongst
the field population while satellite systems are predominantly quenched. This
dichotomy implies that environmental processes play the dominant role in
suppressing star formation within this low-mass regime (). As shown by observations of the Local Volume,
however, there is a non-negligible population of passive systems in the field,
which challenges our understanding of quenching at low masses. By applying the
satellite quenching models of Fillingham et al. (2015) to subhalo populations
in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate
the role of environmental processes in quenching star formation within the
nearby field. Using model parameters that reproduce the satellite quenched
fraction in the Local Group, we predict a quenched fraction -- due solely to
environmental effects -- of within
of the Milky Way and M31. This is in good agreement with current observations
of the Local Volume and suggests that the majority of the passive field systems
observed at these distances are quenched via environmental mechanisms. Beyond
, however, dwarf galaxy quenching becomes difficult to explain
through an interaction with either the Milky Way or M31, such that more
isolated, field dwarfs may be self-quenched as a result of star-formation
feedback.Comment: 9 pages, 4 figures, MNRAS accepted version, comments welcome - RIP
Ducky...gone but never forgotte
Taking Care of Business in a Flash: Constraining the Timescale for Low-Mass Satellite Quenching with ELVIS
The vast majority of dwarf satellites orbiting the Milky Way and M31 are
quenched, while comparable galaxies in the field are gas-rich and star-forming.
Assuming that this dichotomy is driven by environmental quenching, we use the
ELVIS suite of N-body simulations to constrain the characteristic timescale
upon which satellites must quench following infall into the virial volumes of
their hosts. The high satellite quenched fraction observed in the Local Group
demands an extremely short quenching timescale (~ 2 Gyr) for dwarf satellites
in the mass range Mstar ~ 10^6-10^8 Msun. This quenching timescale is
significantly shorter than that required to explain the quenched fraction of
more massive satellites (~ 8 Gyr), both in the Local Group and in more massive
host halos, suggesting a dramatic change in the dominant satellite quenching
mechanism at Mstar < 10^8 Msun. Combining our work with the results of
complementary analyses in the literature, we conclude that the suppression of
star formation in massive satellites (Mstar ~ 10^8 - 10^11 Msun) is broadly
consistent with being driven by starvation, such that the satellite quenching
timescale corresponds to the cold gas depletion time. Below a critical stellar
mass scale of ~ 10^8 Msun, however, the required quenching times are much
shorter than the expected cold gas depletion times. Instead, quenching must act
on a timescale comparable to the dynamical time of the host halo. We posit that
ram-pressure stripping can naturally explain this behavior, with the critical
mass (of Mstar ~ 10^8 Msun) corresponding to halos with gravitational restoring
forces that are too weak to overcome the drag force encountered when moving
through an extended, hot circumgalactic medium.Comment: 12 pages, 6 figures; resubmitted to MNRAS after referee report
(August 25, 2015
Plasma Levels of Polychlorinated Biphenyls, Non-Hodgkin Lymphoma, and Causation
Polychlorinated biphenyls (PCBs) are synthetic chlorinated hydrocarbons that have extensively polluted the environment and bioaccumulated in the food chain. PCBs have been deemed to be probable carcinogens by the Environmental Protection Agency, and exposure to high levels of PCBs has been consistently linked to increased risk of non-Hodgkin lymphoma (NHL). In the present article we present a forensic epidemiologic evaluation of the causal relationship between NHL and elevated PCB levels via application of the Bradford-Hill criteria. Included in the evaluation is a meta-analysis of the results of previously published case-control studies in order to assess the strength of association between NHL and PCBs, resulting in an odds ratio in which the lowest percentile PCB concentration (quartile, quintile, or tertile) has been compared with the highest percentile concentration in the study groups. The weight-adjusted odds ratio for all PCB congeners was 1.43 with a 95% confidence interval of 1.31 to 1.55, indicating a statistically significant causal association with NHL. Because of the lack of an unexposed comparison group, a rationale for the use of a less than 2.0 relative risk causal contribution threshold is presented herein, including an ecologic analysis of NHL incidence and PCB accumulation (as measured by sales volume) over time. The overall results presented here indicate a strong general causal association between NHL and PCB exposure
Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bhatnagar, S., Cowley, E. S., Kopf, S. H., Pérez Castro, S., Kearney, S., Dawson, S. C., Hanselmann, K., & Ruff, S. E. Microbial community dynamics and coexistence in a sulfide-driven phototrophic bloom. Environmental Microbiome, 15(1),(2020): 3, doi:10.1186/s40793-019-0348-0.Background: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time.
Results: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp.
Conclusions: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.This work was carried out at the Microbial Diversity summer course at the Marine Biological Laboratory in Woods Hole, MA. The course was supported by grants from National Aeronautics and Space Administration, the US Department of Energy, the Simons Foundation, the Beckman Foundation, and the Agouron Institute. Additional funding for SER was provided by the Marine Biological Laboratory
Under Pressure: Quenching Star Formation in Low-Mass Satellite Galaxies via Stripping
Recent studies of galaxies in the local Universe, including those in the
Local Group, find that the efficiency of environmental (or satellite) quenching
increases dramatically at satellite stellar masses below ~ . This suggests a physical scale where quenching transitions from a
slow "starvation" mode to a rapid "stripping" mode at low masses. We
investigate the plausibility of this scenario using observed HI surface density
profiles for a sample of 66 nearby galaxies as inputs to analytic calculations
of ram-pressure and viscous stripping. Across a broad range of host properties,
we find that stripping becomes increasingly effective at $M_{*} < 10^{8-9}\
{\rm M}_{\odot}n_{\rm halo} <
10^{-3.5}{\rm cm}^{-3}$), we find that stripping is not fully effective;
infalling satellites are, on average, stripped of < 40 - 70% of their cold gas
reservoir, which is insufficient to match observations. By including a host
halo gas distribution that is clumpy and therefore contains regions of higher
density, we are able to reproduce the observed HI gas fractions (and thus the
high quenched fraction and short quenching timescale) of Local Group
satellites, suggesting that a host halo with clumpy gas may be crucial for
quenching low-mass systems in Local Group-like (and more massive) host halos.Comment: updated version after review, now accepted to MNRAS; Accepted 2016
August 22. Received 2016 August 18; in original form 2016 June 2
Absorption Efficiencies of Forsterite. I: DDA Explorations in Grain Shape and Size
We compute the absorption efficiency (Qabs) of forsterite using the discrete
dipole approximation (DDA) in order to identify and describe what
characteristics of crystal grain shape and size are important to the shape,
peak location, and relative strength of spectral features in the 8-40 {\mu}m
wavelength range. Using the DDSCAT code, we compute Qabs for non-spherical
polyhedral grain shapes with a_eff = 0.1 {\mu}m. The shape characteristics
identified are: 1) elongation/reduction along one of three crystallographic
axes; 2) asymmetry, such that all three crystallographic axes are of different
lengths; and 3) the presence of crystalline faces that are not parallel to a
specific crystallographic axis, e.g., non-rectangular prisms and (di)pyramids.
Elongation/reduction dominates the locations and shapes of spectral features
near 10, 11, 16, 23.5, 27, and 33.5 {\mu}m, while asymmetry and tips are
secondary shape effects. Increasing grain sizes (0.1-1.0 {\mu}m) shifts the 10,
11 {\mu}m features systematically towards longer wavelengths and relative to
the 11 {\mu}m feature increases the strengths and slightly broadens the longer
wavelength features. Seven spectral shape classes are established for
crystallographic a-, b-, and c-axes and include columnar and platelet shapes
plus non-elongated or equant grain shapes. The spectral shape classes and the
effects of grain size have practical application in identifying or excluding
columnar, platelet or equant forsterite grain shapes in astrophysical environs.
Identification of the shape characteristics of forsterite from 8-40 {\mu}m
spectra provides a potential means to probe the temperatures at which
forsterite formed.Comment: 55 pages, 15 figure
- …