159 research outputs found

    Droplets, Evaporation and a Superhydrophobic Surface: Simple Tools for Guiding Colloidal Particles into Complex Materials

    Get PDF
    The formation of complexly structured and shaped supraparticles can be achieved by evaporation-induced self-assembly (EISA) starting from colloidal dispersions deposited on a solid surface; often a superhydrophobic one. This versatile and interesting approach allows for generating rather complex particles with corresponding functionality in a simple and scalable fashion. The versatility is based on the aspect that basically one can employ an endless number of combinations of components in the colloidal starting solution. In addition, the structure and properties of the prepared supraparticles may be modified by appropriately controlling the evaporation process, e.g., by external parameters. In this review, we focus on controlling the shape and internal structure of such supraparticles, as well as imparted functionalities, which for instance could be catalytic, optical or electronic properties. The catalytic properties can also result in self-propelling (supra-)particles. Quite a number of experimental investigations have been performed in this field, which are compared in this review and systematically explained

    Complexes of oppositely charged polyelectrolytes and surfactants - recent developments in the field of biologically derived polyelectrolytes

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We review the work done on complexes between biopolyelectrolytes such as ionically modified cellulose or chitosan and oppositely charged surfactants. Around equimolarity of the charges one typically observes precipitation but for other mixing ratios one may form long-time stable complexes, where structure and rheology depend on the mixing ratio, total concentration and the molecular constitution of the components. In addition, it may be the case that the structures are formed under non-equilibrium situations and therefore depend on the preparation path. The binding is shown to occur cooperatively and the micelles present often retain their shape irrespective of the complexation. However, the rather stiff biopolyelectrolytes may lead to an interconnection between different aggregates thereby forming a network with the corresponding rheological properties. In general, the structure and the properties of the aggregates are rather versatile and correspondingly one can create a wide range of different surfactant–biopolyelectrolyte systems by appropriately choosing the composition. This is very interesting as it allows for formulations with a large range of tuneable properties with ecologically friendly polyelectrolytes for many relevant applications.BMBF, 05K10KT1, NanoSOFT: Teilprojekt 2: Neutronen Spin-Echo Experimente zur Untersuchung komplexer Soft-Matter Systeme mit extremer Präzissio

    Concentration dependent pathways in spontaneous self-assembly of unilamellar vesicles

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We report on the structural dynamics underlying the formation of unilamellar vesicles upon mixing dilute solutions of anionic and zwitterionic surfactant solutions. The spontaneous self-assembly was initiated by rapid mixing of the surfactant solutions using a stopped-flow device and the transient intermediate structures were probed by time-resolved small-angle X-ray scattering. The initial surfactant solutions comprised of anionic lithium perfluorooctanoate and zwitterionic tetradecyldimethylamine oxide, where the mixtures form unilamellar vesicles over a wide range of concentrations and mixing ratios. We found that disk-like transient intermediate structures are formed at higher concentrations while more elongated forms such as cylinder-like and torus-like micelles are involved at lower concentrations. These differences are attributed to monomer addition mechanism dominating the self-assembly process when the initial concentration is well below the critical micellar concentration of the anionic surfactant, while at higher concentrations the process is governed by fusion of disk-like mixed micelles. This means that the pathway of vesicle formation is determined by the proximity to the critical micellar concentration of the more soluble component

    Selectivity of cyclodextrins as a parameter to tune the formation of pseudorotaxanes and micelles supramolecular assemblies. A systematic SANS study

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.We studied the formation of polypseudorotaxanes formed with cyclodextrins (CDs) threading a copolymer chain that forms self-assembled structures in water. The size of the CD cavity was chosen such that it is block selective with respect to the formation of inclusion complexes and therefore in terms of altering the structure of the copolymer self-assemblies in a systematic fashion. Small angle neutron scattering (SANS) experiments provide a direct and clear picture of the shape and interactions of the copolymer micelles in the absence and the presence of various CDs. Moreover, the dissolution of copolymer micelles by CD addition was clearly described by a simple model which provides a tool for quantitative predictions. This study suggests the possibility of designing materials with tunable aggregation abilities in water, where the extent of aggregate formation is determined by the amount and type of added cyclodextrin.EC/FP7/226507/EU/Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy/NMI

    The critical role of surfactants towards CdS nanoparticles: synthesis, stability, optical and PL emission properties

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Cadmium sulfide (CdS) nanoparticles (NPs), prepared by a convenient chemical precipitation method, have been characterized using techniques such as TEM, XRD, zeta potential, absorption and photoluminescence (PL) emission spectroscopy to establish the structure directing role of different cationic and anionic surfactants and their impact on the nanoparticles stabilization. In the synthesis of the CdS NPs, cadmium acetate and sodium sulfide, employed as starting reagents, were dissolved in aqueous solutions of different surfactants to study the effect of their structures on the nucleation, growth, optical and PL emission properties of the NPs. By varying the surfactant species, the CdS NPs have significantly different optical and PL emission properties despite being produced under similar reaction conditions. Depending on the surfactant structure, the growing CdS NPs were stabilized by the surfactants to different extents. For example, in the surfactant with the longest chain length (e.g. cetyltrimethylammonium bromide; CTAB), the CdS NPs were most stable, whereas using a surfactant with a smaller chain length i.e. DTAB, the NPs were unstable for even 1 h. On the other hand, anionic surfactants of even smaller chain lengths were able to stabilize the CdS NPs for quite long times. The generalized study of growth of spherical CdS NPs involves monitoring the kinetics during the progress of the reaction. Additionally, an interesting prominent effect of surfactant structure on the PL emission properties of the NPs has been established under identical reaction conditions

    Rheological Control Of Microemulsions Is Possible By Admixture Of End–Capped Multi–Arm Polymers Of Different Functionality – A Study Of Structure And Dynamics

    Get PDF
    For many applications the interesting properties of microemulsion, which are thermodynamically stable mixture of oil and water facilitated by the presence of a surfactant, are highly interesting. However, for many of these potential applications a much higher viscosity or even gelation would be asked for. Accordingly, mixtures of telechelic polymers and microemulsions are interesting systems from a practical point of view as by the addition of the polymer one is able to exert rheological control over a rather wide range. Furthermore they are model systems of networks where concentration of nodes and connectivity can be tuned separately, which allows for a systematic understanding of the control of the rheological properties of these materials. In our investigation we employed end-capped multi-arm polymers for the bridging of the microemulsion droplets which leads to network formation. For that purpose we employed tailor-made bridging amphiphilic polymers with multiple linkers, which were synthesized by the RAFT procedure with poly(N,N-dimethylacrylamide) (PDMA) as hydrophilic central block. This synthesis allows to control the number of arms (functionality), the length of the hydrophilic group (maximum length for connection) and of the hydrophobic chain (stickiness). We employed various multiply bridging polymers with 2, 3, or 4 arms (see figure) and investigated their effect on structure and dynamics of nonionic O/W microemulsion droplets with radii in the range of 2.5-7 nm. Please click Additional Files below to see the full abstract

    Interaction of Proteins with a Planar Poly(acrylic acid) Brush: Analysis by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D)

    Get PDF
    We describe the preparation of a poly(acrylic acid) (PAA) brush, polymerized by atom transfer radical polymerization (ATRP) of tert-butyl acrylate (tBA) and subsequent acid hydrolysis, on the flat gold surfaces of quartz-crystal microbalance (QCM) crystals. The PAA brushes were characterized by Fourier transform infrared (FT-IR) spectroscopy, ellipsometry and water contact angle analysis. The interaction of the PAA brushes with human serum albumin (HSA) was studied for a range of ionic strengths and pH conditions by quartz-crystal microbalance with dissipation monitoring (QCM-D). The quantitative analysis showed a strong adsorption of protein molecules onto the PAA brush. By increasing the ionic strength, we were able to release a fraction of the initially bound HSA molecules. This finding highlights the importance of counterions in the polyelectrolyte-mediated protein adsorption/desorption. A comparison with recent calorimetric studies related to the binding of HSA to polyelectrolytes allowed us to fully analyze the QCM data based on the results of the thermodynamic analysis of the binding process

    Oil-in-water microemulsion droplets of TDMAO/decane interconnected by the telechelic C18-EO150-C18: clustering and network formation

    Get PDF
    The effect of a doubly hydrophobically end-capped water soluble polymer (C18-PEO150-C18) on the properties of an oil-in-water (O/W) droplet microemulsion (R [similar] 2.85 nm) has been studied as a function of the amount of added telechelic polymer. Macroscopically one observes a substantial increase of viscosity once a concentration of [similar]5 hydrophobic stickers per droplet is surpassed and effective cross-linking of the droplets takes place. SANS measurements show that the size of the individual droplets is not affected by the polymer addition but it induces attractive interactions at low concentration and repulsive ones at high polymer content. Measurements of the diffusion coefficient by DLS and FCS show increasing sizes at low polymer addition that can be attributed to the formation of clusters of microemulsion droplets interconnected by the polymer. At higher polymer content the network formation leads to an additional slow relaxation mode in DLS that can be related to the rheological behaviour, while the self-diffusion observed in FCS attains a lower plateau value, i.e., the microemulsion droplets remain effectively fixed within the network. The combination of SANS, DLS, and FCS allows us to derive a self-consistent picture of the evolution of structure and dynamics of the mixed system microemulsion/telechelic polymer as a function of the polymer content, which is not only relevant for controlling the macroscopic rheological properties but also with respect to the internal dynamics as it is, for instance, relevant for the release and transport of active agents

    Control of the stability and structure of liposomes by means of nanoparticles

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The interaction of bilayer vesicles with hard nanoparticles is of great relevance to the field of nanotechnology, e.g., its impact on health and safety matters, and also as vesicles are important as delivery vehicles. In this work we describe hybrid systems composed of zwitterionic phospholipid vesicles (DPPC), which are below the phase transition temperature, and added silica nanoparticles (SiNPs) of much smaller size. The initial DPPC unilamellar vesicles, obtained by extrusion, are rather unstable and age but the rate of ageing can be controlled over a large time range by the amount of added SiNPs. For low addition they become destabilized whereas larger amounts of SiNPs enhance the stability largely as confirmed by dynamic light scattering (DLS). ζ-Potential and DSC measurements confirm the binding of the SiNPs onto the phospholipid vesicles, which stabilizes the vesicles against flocculation by rendering the ζ-potential more negative. This effect appears above a specific SiNP concentration, and is the result of the adsorption of the negatively charged nanoparticles onto the outer surface of the liposome leading to decorated vesicles as proven by cryogenic transmission electron microscopy (cryo-TEM). Small amounts of surface-adsorbed SiNPs initially lead to a bridging of vesicles thereby enhancing flocculation, while higher amounts render the vesicles much more negatively charged and thereby long-time stable. This stability has an optimum at neutral pH and for low ionic strength. Thus we show that the addition of the SiNPs is a versatile way to control the stability of gel-state phospholipid vesicles and also to modulate their surface structure in a systematic fashion. This is not only of importance for understanding the fundamental interaction between SiNPs and bilayer vesicles, but also with respect to using silica particles as formulation aids for phospholipid dispersions.DFG, GRK 1524, Self-Assembled Soft-Matter Nanostructures at Interface
    • …
    corecore