71 research outputs found

    Dust production 680-850 million years after the Big Bang

    Full text link
    Dust plays an important role in our understanding of the Universe, but it is not obvious yet how the dust in the distant universe was formed. I derived the dust yields per asymptotic giant branch (AGB) star and per supernova (SN) required to explain dust masses of galaxies at z=6.3-7.5 (680-850 million years after the Big Bang) for which dust emission has been detected (HFLS3 at z=6.34, ULAS J1120+0641 at z=7.085, and A1689-zD1 at z=7.5), or unsuccessfully searched for. I found very high required yields, implying that AGB stars could not contribute substantially to dust production at these redshifts, and that SNe could explain these dust masses, but only if they do not destroy most of the dust they form (which is unlikely given the upper limits on the SN dust yields derived for galaxies where dust is not detected). This suggests that the grain growth in the interstellar medium is likely required at these early epochs.Comment: Accepted to A&A. 6 pages, 1 figure, 2 tables. V2: minor changes to match the published versio

    Shaping the dust mass - star-formation rate relation

    Full text link
    There is a remarkably tight relation between the observationally inferred dust masses and star-formation rates (SFRs) of SDSS galaxies, Mdust \propto SFR1.11^{1.11} (Da Cunha et al. 2010). Here we extend the Mdust-SFR relation to the high end and show that it bends over at very large SFRs (i.e., dust masses are lower than predicted for a given SFR). We identify several distinct evolutionary processes in the diagram: (1) A star-bursting phase in which dust builds up rapidly at early times. The maximum attainable dust mass in this process is the cause of the bend-over of the relation. A high dust-formation efficiency, a bottom-light initial mass function, and negligible supernova shock dust destruction are required to produce sufficiently high dust masses. (2) A quiescent star-forming phase in which the subsequent parallel decline in dust mass and SFR gives rise to the Mdust-SFR relation, through astration and dust destruction. The dust-to-gas ratio is approximately constant along the relation. We show that the power-law slope of the Mdust-SFR relation is inversely proportional to the global Schmidt-Kennicutt law exponent (i.e., 0.9\sim 0.9) in simple chemical evolution models. (3) A quenching phase which causes star formation to drop while the dust mass stays roughly constant or drops proportionally. Combined with merging, these processes, as well as the range in total baryonic mass, give rise to a complex population of the diagram which adds significant scatter to the original Mdust-SFR relation. (4) At very high redshifts, a population of galaxies located significantly below the local relation is predicted.Comment: 5 pages, 1 figure, ApJL, in pres

    First measurement of HI 21cm emission from a GRB host galaxy indicates a post-merger system

    Full text link
    We report the detection and mapping of atomic hydrogen in HI 21cm emission from ESO 184-G82, the host galaxy of the gamma ray burst 980425. This is the first instance where HI in emission has been detected from a galaxy hosting a gamma ray burst. ESO 184-G82 is an isolated galaxy and contains a Wolf-Rayet region close to the location of the gamma ray burst and the associated supernova, SN 1998bw. This is one of the most luminous HII regions identified in the local Universe, with a very high inferred density of star formation. The HI 21cm observations reveal a high HI mass for the galaxy, twice as large as the stellar mass. The spatial and velocity distribution of the HI 21cm emission reveals a disturbed rotating gas disk, which suggests that the galaxy has undergone a recent minor merger that disrupted its rotation. We find that the Wolf-Rayet region and the gamma ray burst are both located in the highest HI column density region of the galaxy. We speculate that the merger event has resulted in shock compression of the gas, triggering extreme star formation activity, and resulting in the formation of both the Wolf-Rayet region and the gamma ray burst. The high HI column density environment of the GRB is consistent with the high HI column densities seen in absorption in the host galaxies of high redshift gamma ray bursts.Comment: Accepted for publication in MNRAS Letters. 5 pages, 5 figures, 2 tables. For the definitive version visit http://mnrasl.oxfordjournals.org

    Connection of supernovae 2002ap, 2003gd, 2013ej, and 2019krl in M 74 with atomic gas accretion and spiral structure

    Get PDF
    Studying the nature of various types of supernovae (SNe) is important for our understanding of stellar evolution. Observations of atomic and molecular gas in the host galaxies of gamma-ray bursts (GRBs) and SNe have recently been used to learn about the nature of the explosions themselves and the star formation events during which their progenitors were born. Based on archival data for M 74, which previously has not been investigated in the context of SN positions, we report the gas properties in the environment of the broad-lined type Ic (Ic-BL) SN 2002ap and the type II SNe 2003gd, 2013ej, and 2019krl. The SN 2002ap is located at the end of an off-centre, asymmetric, 55 kpc-long HI extension containing 7.5% of the total atomic gas in M 74, interpreted as a signature of external gas accretion. It is the fourth known case of an explosion of a presumably massive star located close to a concentration of atomic gas (after GRBs 980425, 060505, and SN 2009bb). It is unlikely that all these associations are random (at a 3σ significance), so the case of SN 2002ap adds to the evidence that the birth of the progenitors of type Ic-BL SNe and GRBs is connected with the accretion of atomic gas from the intergalactic medium. The HI extension could come from tidally disrupted companions of M 74, or be a remnant of a galaxy or a gas cloud that accreted entirely from the intragroup medium. The other (type II) SNe in M 74 are located at the outside edge of a spiral arm. This suggests that either their progenitors were born when gas was piling up there or that the SN progenitors moved away from the arm due to their orbital motions. These type II SNe do not seem to be related to gas accretion

    Connection of supernovae 2002ap, 2003gd, 2013ej, and 2019krl in M74 with atomic gas accretion and spiral structure

    Full text link
    Studying the nature of various types of supernovae (SNe) is important for our understanding of stellar evolution. Observations of atomic and molecular gas in the host galaxies of gamma-ray bursts (GRBs) and SNe have recently been used to learn about the nature of the explosions themselves and the star formation events during which their progenitors were born. Based on archival data for M74, which previously has not been investigated in the context of SN positions, we report the gas properties in the environment of the broad-lined type Ic (Ic-BL) SN 2002ap and the type II SNe 2003gd, 2013ej, and 2019krl. The SN 2002ap is located at the end of an off-centre, asymmetric, 55 kpc-long HI extension containing 7.5% of the total atomic gas in M74, interpreted as a signature of external gas accretion. It is the fourth known case of an explosion of a presumably massive star located close to a concentration of atomic gas (after GRBs 980425, 060505, and SN 2009bb). It is unlikely that all these associations are random (at a 3sigma significance), so the case of SN 2002ap adds to the evidence that the birth of the progenitors of type Ic-BL SNe and GRBs is connected with the accretion of atomic gas from the intergalactic medium. The HI extension could come from tidally disrupted companions of M74, or be a remnant of a galaxy or a gas cloud that accreted entirely from the intragroup medium. The other (type II) SNe in M74 are located at the outside edge of a spiral arm. This suggests that either their progenitors were born when gas was piling up there or that the SN progenitors moved away from the arm due to their orbital motions. These type II SNe do not seem to be related to gas accretion.Comment: A&A, in press, 7 pages, 5 figures, 1 tabl

    Connection of supernovae 2002ap, 2003gd, 2013ej, and 2019krl in M 74 with atomic gas accretion and spiral structure

    Get PDF
    Studying the nature of various types of supernovae (SNe) is important for our understanding of stellar evolution. Observations of atomic and molecular gas in the host galaxies of gamma-ray bursts (GRBs) and SNe have recently been used to learn about the nature of the explosions themselves and the star formation events during which their progenitors were born. Based on archival data for M 74, which previously has not been investigated in the context of SN positions, we report the gas properties in the environment of the broad-lined type Ic (Ic-BL) SN 2002ap and the type II SNe 2003gd, 2013ej, and 2019krl. The SN 2002ap is located at the end of an off-centre, asymmetric, 55 kpc-long HI extension containing 7.5% of the total atomic gas in M 74, interpreted as a signature of external gas accretion. It is the fourth known case of an explosion of a presumably massive star located close to a concentration of atomic gas (after GRBs 980425, 060505, and SN 2009bb). It is unlikely that all these associations are random (at a 3σ significance), so the case of SN 2002ap adds to the evidence that the birth of the progenitors of type Ic-BL SNe and GRBs is connected with the accretion of atomic gas from the intergalactic medium. The HI extension could come from tidally disrupted companions of M 74, or be a remnant of a galaxy or a gas cloud that accreted entirely from the intragroup medium. The other (type II) SNe in M 74 are located at the outside edge of a spiral arm. This suggests that either their progenitors were born when gas was piling up there or that the SN progenitors moved away from the arm due to their orbital motions. These type II SNe do not seem to be related to gas accretion

    Determining the stellar masses of submillimetre galaxies: the critical importance of star formation histories

    Full text link
    Submillimetre (submm) galaxies are among the most rapidly star-forming and most massive high-redshift galaxies; thus, their properties provide important constraints on galaxy evolution models. However, there is still a debate about their stellar masses and their nature in the context of the general galaxy population. To test the reliability of their stellar mass determinations, we used a sample of simulated submm galaxies for which we derived stellar masses via spectral energy distribution (SED) modelling (with Grasil, Magphys, Hyperz and LePhare) adopting various star formation histories (SFHs). We found that the assumption of SFHs with two independent components leads to the most accurate stellar masses. Exponentially declining SFHs (tau) lead to lower masses (albeit still consistent with the true values), while the assumption of single-burst SFHs results in a significant mass underestimation. Thus, we conclude that studies based on the higher masses inferred from fitting the SEDs of real submm galaxies with double SFHs are most likely to be correct, implying that submm galaxies lie on the high-mass end of the main sequence of star-forming galaxies. This conclusion appears robust to assumptions of whether or not submm galaxies are driven by major mergers, since the suite of simulated galaxies modelled here contains examples of both merging and isolated galaxies. We identified discrepancies between the true and inferred stellar ages (rather than the dust attenuation) as the primary determinant of the success/failure of the mass recovery. Regardless of the choice of SFH, the SED-derived stellar masses exhibit a factor of ~2 scatter around the true value; this scatter is an inherent limitation of the SED modelling due to simplified assumptions. Finally, we found that the contribution of active galactic nuclei does not have any significant impact on the derived stellar masses.Comment: Accepted to A&A. 11 pages, 9 figures, 1 table. V2 main changes: 1) discussion of the stellar age as the main parameter influencing the success of an SED model (Fig. 4, 5, 7); 2) discussion of the age-dust degeneracy (Fig 9); 3) the comparison of real and simulated submm galaxies (Fig 1
    corecore