49 research outputs found

    Sol-gel synthesis of iron oxide-silica composite microstructures

    Get PDF
    Spherical silica particles doped with iron oxide have been synthesized via base-catalyzed one-pot sol–gel process using tetraethoxysilane (TEOS) and iron(III) eth- oxide (ITE) as co-precursors. In the modified Sto ̈ ber pro- cess adopted, depending on the concentration of ITE in the starting composition, materials of various morphologies were observed under a scanning electron microscope and an atomic force microscope. The presence of ITE signifi- cantly affected the formation process of particulate silica; the spherical particles were formed accompanied by the co- presence of irregular-shaped finer aggregates. The fraction of the aggregates with rough surfaces increased with an increase of the ITE content in the reaction mixture. Both the spherical particles and irregular-shaped aggregates contained iron hydroxide and they exhibited paramagnetic behavior. The chemical composition and physicochemical properties of the materials were determined using various complementary spectroscopic methods

    Label-free infrared spectroscopy and imaging of single phospholipid bilayers with nanoscale resolution

    Get PDF
    Mid-infrared absorption spectroscopy has been used extensively to study the molecular properties of cell membranes and model systems. Most of these studies have been carried out on macroscopic samples or on samples a few micrometers in size, due to constraints on sensitivity and spatial resolution with conventional instruments that rely on far-field optics. Properties of membranes on the scale of nanometers, such as in-plane heterogeneity, have to date eluded investigation by this technique. In the present work, we demonstrate the capability to study single bilayers of phospholipids with near-field mid-infrared spectroscopy and imaging and achieve a spatial resolution of at least 40 nm, corresponding to a sample size of the order of a thousand molecules. The quality of the data and the observed spectral features are consistent with those reported from measurements of macroscopic samples and allow detailed analysis of molecular properties, including orientation and ordering of phospholipids. The work opens the way to the nanoscale characterization of the biological membranes for which phospholipid bilayers serve as a model

    Fabrication of functional carbon/magnetic nanocomposites as a promising model of utilization of used crosslinked polymers

    Get PDF
    The utilization of used crosslinked functional polymers (CFP) applied as sorbents or ion-exchangers is a great challenge arising from the need to protect the environment. In this paper we report a very promising way of obtaining carbon/magnetic composites based on metal (Co2+; Ni2+; Fe3+) derivatives of butadiene rubber-based phosphorus-containing polymer, which were treated as the model used CFP. We proposed a facile one-step thermal degradation approach to transform used CFP into carbon/magnetic composites (CMC). The obtained CMCs contained a mixture of metal phosphates and metal phosphides that exhibited strong magnetic properties due to the presence of nanosized metal derivatives with diameters of 100⁻140 nm. Structural and morphological changes of CFP and CMC after thermal degradation were investigated by the FTIR technique, X-ray Diffraction analysis, Scanning Electron Microscope, and Atomic Force Microscope⁻Magnetic Force Microscope. Moreover, thermal degradation kinetics parameters were determined to optimize the efficiency of the process

    Solar energy can be cheaper

    No full text

    A facile route to electronically conductive polyelectrolyte brushes as platforms of molecular wires

    No full text
    A facile strategy for the synthesis of conjugated polyelectrolyte brushes grafted from a conductive surface is presented. Such brushes form a platform of molecular wires oriented perpendicularly to the surface, enabling efficient directional transport of charge carriers. As the synthesis of conjugated polymer brushes using chain-growth polymerization via a direct “grafting from” approach is very challenging, we developed a self-templating surface-initiated method. It is based on the formation of multimonomer template chains in the first surface-initiated polymerization step, followed by the second polymerization leading to conjugated chains in an overall ladder-like architecture. This strategy exploits the extended conformation of the surface-grafted brushes, thereby enabling alignment of the pendant polymerizable groups along the template chains. We synthesized a new bifunctional monomer and used the developed approach to obtain quaternized poly(ethynylpyridine) chains on a conductive indium tin oxide surface. A catalyst-free quaternization polymerization was for the first time used here for surface grafting. The presence of charged groups makes the obtained brushes both ionically and electronically conductive. After doping with iodine, the brushes exhibited electronic conductivity, in the direction perpendicular to the surface, as high as 10−1–100 S m−1. Tunneling AFM was used for mapping the surface conductivity and measuring the conductivity in the spectroscopic mode. The proposed synthetic strategy is very versatile as a variety of monomers with pendant polymerizable groups and various polymerization techniques may be applied, leading to platforms of molecular wires with the desired characteristics
    corecore