16 research outputs found

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    The ArcD1 and ArcD2 arginine/ornithine exchangers encoded in the arginine deiminase (ADI) pathway gene cluster of Lactococcus lactis

    Get PDF
    The arginine deiminase pathway (ADI) gene cluster in Lactococcus lactis contains two copies of a gene encoding an L-arginine/L-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. Deletion of arcD1 resulted in loss of the growth advantage observed in the presence of high L-arginine in different growth media. Uptake of L-arginine and L-ornithine by resting cells was reduced down to the low level observed for a ArcD1/ArcD2 double deletion mutant. Deletion of the arcD2 gene did not affect the growth enhancement and uptake activities were slightly reduced. Nevertheless, recombinant expression of ArcD2 in the ArcD1/ArcD2 double mutant did recover the growth advantage. Kinetic characterization of ArcD1 and ArcD2 showed high affinities for both L-arginine and L-ornithine (Km in the μM range). A difference between the two transporters was the significantly lower affinity of ArcD2 for the cationic amino acids L-ornithine, L-lysine and L-histidine. In contrast, the affinity of ArcD2 was higher for the neutral amino acid L-alanine. Moreover, ArcD2 efficiently translocated L-alanine while ArcD1 did not. Both transporters revealed affinities in the mM range for agmatine, cadaverine, histamine and putrescine. These amines only bind but are not translocated. It is concluded that ArcD1 is the main L-arginine/L-ornithine exchanger in the ADI pathway and that ArcD2 is not functionally expressed in the media used. ArcD2 is proposed to function together with the arcT gene that encodes a putative transaminase and is found adjacent to the arcD2 gene. IMPORTANCE: The arginine deiminase pathway (ADI) gene cluster in Lactococcus lactis contains two copies of a gene encoding an L-arginine/L-ornithine exchanger, the arcD1 and arcD2 genes. The physiological function of ArcD1 and ArcD2 was studied by deleting the two genes. It is concluded that ArcD1 is the main L-arginine/L-ornithine exchanger in the ADI pathway. ArcD2 is proposed to function as a L-arginine/L-alanine exchanger in a pathway together with the arcT gene that is found adjacent to the arcD2 gene in the ADI gene cluster
    corecore