42 research outputs found

    GABA-A receptor genes do not play a role in genetics of Lesch's typology in Caucasian subjects

    Get PDF
    Lesch's typology differentiates alcoholics into different treatment response subgroups. The effects of ethanol are mediated, to an important extent, via the GABA-ergic system. We have evaluated the linkage disequilibrium patterns and haplotype frequencies of GABRG1 and GABRA2 genes in 133 alcoholics divided according to Lesch's typology and in 145 matched controls. Besides several relationships at a threshold of statistical significance, we found no significant differences in the haplotype distribution of these genes between alcoholics and controls. Lesch's typology may not be related with the genotype of alcoholics – at least in terms of genes with an established role in the development of dependency

    Glucocorticoid-regulated kinase CAMKIγ\gamma in the central amygdala controls anxiety-like behavior in mice

    Get PDF
    The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli

    Expression of alternatively spliced variants of the Dclk1 gene is regulated by psychotropic drugs

    Get PDF
    Abstract Background The long-term effects of psychotropic drugs are associated with the reversal of disease-related alterations through the reorganization and normalization of neuronal connections. Molecular factors that trigger drug-induced brain plasticity remain only partly understood. Doublecortin-like kinase 1 (Dclk1) possesses microtubule-polymerizing activity during synaptic plasticity and neurogenesis. However, the Dclk1 gene shows a complex profile of transcriptional regulation, with two alternative promoters and exon splicing patterns that suggest the expression of multiple isoforms with different kinase activities. Results Here, we applied next-generation sequencing to analyze changes in the expression of Dclk1 gene isoforms in the brain in response to several psychoactive drugs with diverse pharmacological mechanisms of action. We used bioinformatics tools to define the range and levels of Dclk1 transcriptional regulation in the mouse nucleus accumbens and prefrontal cortex. We also sought to investigate the presence of DCLK1-derived peptides using mass spectrometry. We detected 15 transcripts expressed from the Dclk1 locus (FPKM > 1), including 2 drug-regulated variants (fold change > 2). Drugs that act on serotonin receptors (5-HT2A/C) regulate a subset of Dclk1 isoforms in a brain-region-specific manner. The strongest influence was observed for the mianserin-induced expression of an isoform with intron retention. The drug-activated expression of novel alternative Dclk1 isoforms was validated using qPCR. The drug-regulated isoform contains genetic variants of DCLK1 that have been previously associated with schizophrenia and hyperactivity disorder in humans. We identified a short peptide that might originate from the novel DCLK1 protein product. Moreover, protein domains encoded by the regulated variant indicate their potential involvement in the negative regulation of the canonical DCLK1 protein. Conclusions In summary, we identified novel isoforms of the neuroplasticity-related gene Dclk1 that are expressed in the brain in response to psychotropic drug treatments

    A maternal high-fat diet during pregnancy and lactation induced depression-like behavior in offspring and myelin-related changes in the rat prefrontal cortex

    Get PDF
    In accordance with the developmental origins of health and disease, early-life environmental exposures, such as maternal diet, can enhance the probability and gravity of health concerns in their offspring in the future. Over the past few years, compelling evidence has emerged suggesting that prenatal exposure to a maternal high-fat diet (HFD) could trigger neuropsychiatric disorders in the offspring, such as depression. The majority of brain development takes place before birth and during lactation. Nevertheless, our understanding of the impact of HFD on myelination in the offspring’s brain during both gestation and lactation remains limited. In the present study, we investigated the effects of maternal HFD (60% energy from fat) on depressive-like and myelin-related changes in adolescent and adult rat offspring. Maternal HFD increased immobility time during the forced swimming test in both adolescent and adult offspring. Correspondingly, the depressive-like phenotype in offspring correlated with dysregulation of several genes and proteins in the prefrontal cortex, especially of myelin-oligodendrocyte glycoprotein (MOG), myelin and lymphocyte protein (MAL), 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase), kallikrein 6, and transferrin in male offspring, as well as of MOG and kallikrein 6 in female offspring, which persist even into adulthood. Maternal HFD also induced long-lasting adaptations manifested by the reduction of immature and mature oligodendrocytes in the prefrontal cortex in adult offspring. In summary, maternal HFD-induced changes in myelin-related genes are correlated with depressive-like behavior in adolescent offspring, which persists even to adulthood

    Mechanisms of attenuation of pulmonary V'O_{2} slow component in humans after prolonged endurance training

    Get PDF
    In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V'O2 ) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean\ub1SD: age 22.33\ub11.44 years, V'O2peak 3198\ub1458 mL \ub7 min-1 ) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by 3c5%, P = 0.027) in V'O2 during prior low-intensity exercise (20 W) and in shortening of \u3c4 p of the V'O2 on-kinetics (30.1\ub15.9 s vs. 25.4\ub11.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V'O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V'O2 by 3c5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V'O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V'O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V'O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the "additional" ATP usage rising gradually during heavy-intensity exercise

    Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes

    No full text
    Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression

    Genotype-dependent consequences of traumatic stress in four inbred mouse strains

    No full text
    Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops in predisposed individuals following a terrifying event. Studies on isogenic animal populations might explain susceptibility to PTSD by revealing associations between the molecular and behavioural consequences of traumatic stress. Our study employed four inbred mouse strains to search for differences in post-stress response to a 1.5-mA electric foot shock. One day to 6 weeks after the foot shock anxiety, depression and addiction-like phenotypes were assessed. In addition, expression levels of selected stress-related genes were analysed in hippocampus and amygdala. C57BL/6J mice exhibited up-regulation in the expression of Tsc22d3, Nfkbia, Plat and Crhr1 genes in both brain regions. These alterations were associated with an increase of sensitized fear and depressive-like behaviour over time. Traumatic stress induced expression of Tsc22d3, Nfkbia, Plat and Fkbp5 genes and developed social withdrawal in DBA/2J mice. In 129P3/J strain, exposure to stress produced the up-regulation of Tsc22d3 and Nfkbia genes and enhanced sensitivity to the rewarding properties of morphine. Whereas, SWR/J mice displayed increase only in Pdyn expression in the amygdala and had the lowest conditioned fear. Our results reveal a complex genetic background of phenotypic variation in response to stress and indicate the SWR/J strain as a valuable model of stress resistance. We found potential links between the alterations in expression of Tsc22d3, Nfkbia and Pdyn, and different aspects of susceptibility to stress
    corecore