7 research outputs found

    Observational hints on the Big Bounce

    Full text link
    In this paper we study possible observational consequences of the bouncing cosmology. We consider a model where a phase of inflation is preceded by a cosmic bounce. While we consider in this paper only that the bounce is due to loop quantum gravity, most of the results presented here can be applied for different bouncing cosmologies. We concentrate on the scenario where the scalar field, as the result of contraction of the universe, is driven from the bottom of the potential well. The field is amplified, and finally the phase of the standard slow-roll inflation is realized. Such an evolution modifies the standard inflationary spectrum of perturbations by the additional oscillations and damping on the large scales. We extract the parameters of the model from the observations of the cosmic microwave background radiation. In particular, the value of inflaton mass is equal to m=(2.6±0.6)1013m=(2.6 \pm 0.6) \cdot 10^{13} GeV. In our considerations we base on the seven years of observations made by the WMAP satellite. We propose the new observational consistency check for the phase of slow-roll inflation. We investigate the conditions which have to be fulfilled to make the observations of the Big Bounce effects possible. We translate them to the requirements on the parameters of the model and then put the observational constraints on the model. Based on assumption usually made in loop quantum cosmology, the Barbero-Immirzi parameter was shown to be constrained by γ<1100\gamma<1100 from the cosmological observations. We have compared the Big Bounce model with the standard Big Bang scenario and showed that the present observational data is not informative enough to distinguish these models.Comment: 25 pages, 8 figures, JHEP3.cl

    AIC, BIC, Bayesian evidence against the interacting dark energy model

    Get PDF
    Recent astronomical observations have indicated that the Universe is in the phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting Λ\LambdaCDM model where the interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative---the Λ\LambdaCDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: SNIa (Union2.1), h(z)h(z), BAO, Alcock--Paczynski test and CMB we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting Λ\LambdaCDM model when compared to the Λ\LambdaCDM model, while those based on the BIC indicated that there is the strong evidence against it in favor the Λ\LambdaCDM model. Given the weak or almost none support for the interacting Λ\LambdaCDM model and bearing in mind Occam's razor we are inclined to reject this model.Comment: LaTeX svjour3, 12 pages, 3 figure

    Smoothed quantum fluctuations and CMB observations

    No full text

    Future sudden singularities in Palatini cosmology

    No full text
    We show that future singularities which have appeared in the Palatini cosmological models investigated in [1] are of finite size at finite time type [2]

    SMOOTHED QUANTUM FLUCTUATIONS AND CMB OBSERVATIONS

    No full text

    Future sudden singularities in Palatini cosmology

    No full text
    We show that future singularities which have appeared in the Palatini cosmological models investigated in [1] are of finite size at finite time type [2]
    corecore