1,811 research outputs found

    Statistical mechanics of systems with long-range interactions and negative absolute temperature

    Full text link
    A Hamiltonian model living in a bounded phase space and with long-range interactions is studied. It is shown, by analytical computations, that there exists an energy interval in which the microcanonical entropy is a decreasing convex function of the total energy, meaning that ensemble equivalence is violated in a negative-temperature regime. The equilibrium properties of the model are then investigated by molecular dynamics simulations: first, the caloric curve is reconstructed for the microcanonical ensemble and compared to the analytical prediction, and a generalized Maxwell-Boltzmann distribution for the momenta is observed; then, the nonequivalence between the microcanonical and canonical descriptions is explicitly shown. Moreover, the validity of Fluctuation-Dissipation Theorem is verified through a numerical study, also at negative temperature and in the region where the two ensembles are nonequivalent

    Plasma heating and particle acceleration in collisionless shocks through astrophysical observations

    Get PDF
    Supernova remnants (SNRs), the products of stellar explosions, are powerful astrophysical laboratories, which allow us to study the physics of collisionless shocks, thanks to their bright electromagnetic emission. Blast wave shocks generated by supernovae (SNe) provide us with an observational window to study extreme conditions, characterized by high Mach (and Alfvenic Mach) numbers, together with powerful nonthermal processes. In collisionless shocks, temperature equilibration between different species may not be reached at the shock front. In this framework, different particle species might be heated at different temperatures (depending on their mass) in the post-shock medium of SNRs. SNRs are also characterized by a broadband nonthermal emission stemming at the shock front as a result of nonthermal populations of leptons and hadrons. These particles, known as cosmic rays, are accelerated up to ultrarelativistic energies via diffusive shock acceleration. If SNRs lose a significant fraction of their ram energy to accelerate cosmic rays, the shock dynamics should be altered with respect to the adiabatic case. This shock modification should result in an increase of the total shock compression ratio with respect to the Rankine-Hugoniot value of 4. Here I show that the combination of X-ray high resolution spectroscopy (to measure ion temperatures) and moderate resolution spectroscopy (for a detailed diagnostic of the post-shock density) can be exploited to study both the heating mechanism and the particle acceleration in collisionless shocks. I report on new results in the temperatures measured for different ion species in the remnant of SN 1987A. I also discuss evidence of shock modification recently obtained in the remnant of SN 1006 a. D., where the shock compression ratio increases significantly as the angle between the shock velocity and the ambient magnetic field is reduced.Comment: Author's preprint. Accepted for publication in Plasma Physics and Controlled Fusion after minor revision

    Overionization in X-ray spectra: a new paradigm for Mixed-Morphology SNRs

    Full text link
    Mixed-morphology SNRs are characterized by a shell-like radio emission, a centrally peaked X-ray morphology, and by interaction with molecular clouds. Many models have been proposed to explain these peculiar remnants, but their physical origin is still unclear. The recent discovery of over-ionized (i. e. recombining) ejecta in 3 mixed-morphology SNRs has dramatically challenged all the previous models and opened up new, unexpected scenarios. I review the main properties of these remnants and their peculiar X-ray spectral properties. I also discuss the hydrodynamic model developed to explain the presence of over-ionized ejecta in W49B and present a list of open issues that still need to be clarified.Comment: Invited review for Cosmic rays and their interstellar medium environment (CRISM-2011). To be published in a special issue of Memorie della Societa' Astronomica Italian

    XMM-Newton Large Program on SN1006 - II: Thermal Emission

    Get PDF
    Based on the XMM-Newton large program on SN1006 and our newly developed spatially resolved spectroscopy tools (Paper~I), we study the thermal emission from ISM and ejecta of SN1006 by analyzing the spectra extracted from 583 tessellated regions dominated by thermal emission. With some key improvements in spectral analysis as compared to Paper~I, we obtain much better spectral fitting results with less residuals. The spatial distributions of the thermal and ionization states of the ISM and ejecta show different features, which are consistent with a scenario that the ISM (ejecta) is heated and ionized by the forward (reverse) shock propagating outward (inward). Different elements have different spatial distributions and origins, with Ne mostly from the ISM, Si and S from the ejecta, and O and Mg from both ISM and ejecta. Fe L-shell lines are only detected in a small shell-like region SE to the center of SN1006, indicating that most of the Fe-rich ejecta has not yet or just recently been reached by the reverse shock. The overall ejecta abundance patterns for most of the heavy elements, except for Fe and sometimes S, are consistent with typical Type~Ia SN products. The NW half of the SNR interior probably represents a region with turbulently mixed ISM and ejecta, so has enhanced emission from O, Mg, Si, S, lower ejecta temperature, and a large diversity of ionization age. In addition to the asymmetric ISM distribution, an asymmetric explosion of the progenitor star is also needed to explain the asymmetric ejecta distribution.Comment: 9 pages, 7 figures, 1 table, MNRAS in pres

    XMM-Newton Large Program on SN1006 - I: Methods and Initial Results of Spatially-Resolved Spectroscopy

    Get PDF
    Based on our newly developed methods and the XMM-Newton large program of SN1006, we extract and analyze the spectra from 3596 tessellated regions of this SNR each with 0.3-8 keV counts >104>10^4. For the first time, we map out multiple physical parameters, such as the temperature (kTkT), electron density (nen_e), ionization parameter (netn_et), ionization age (tiont_{ion}), metal abundances, as well as the radio-to-X-ray slope (α\alpha) and cutoff frequency (νcutoff\nu_{cutoff}) of the synchrotron emission. We construct probability distribution functions of kTkT and netn_et, and model them with several Gaussians, in order to characterize the average thermal and ionization states of such an extended source. We construct equivalent width (EW) maps based on continuum interpolation with the spectral model of each regions. We then compare the EW maps of OVII, OVIII, OVII Kδ−ζ\delta-\zeta, Ne, Mg, SiXIII, SiXIV, and S lines constructed with this method to those constructed with linear interpolation. We further extract spectra from larger regions to confirm the features revealed by parameter and EW maps, which are often not directly detectable on X-ray intensity images. For example, O abundance is consistent with solar across the SNR, except for a low-abundance hole in the center. This "O Hole" has enhanced OVII Kδ−ζ\delta-\zeta and Fe emissions, indicating recently reverse shocked ejecta, but also has the highest netn_et, indicating forward shocked ISM. Therefore, a multi-temperature model is needed to decompose these components. The asymmetric metal distributions suggest there is either an asymmetric explosion of the SN or an asymmetric distribution of the ISM.Comment: 25 pages, 18 figures, 4 tables, MNRAS, in pres

    In silico investigation of Alsin RLD conformational dynamics and phosphoinositides binding mechanism

    Get PDF
    Alsin is a protein known for its major role in neuronal homeostasis and whose mutation is associated with early-onset neurodegenerative diseases. It has been shown that its relocalization from the cytoplasm to the cell membrane is crucial to induce early endosomes maturation. In particular, evidences suggest that the N-terminal regulator of chromosome condensation 1 like domain (RLD) is necessary for membrane association thanks to its affinity to phosphoinositides, membrane lipids involved in the regulation of several signaling processes. Interestingly, this domain showed affinity towards phosphatidylinositol 3-phosphate [PI(3)P], which is highly expressed in endosomes membrane. However, Alsin structure has not been experimentally resolved yet and molecular mechanisms associated with its biological functions are mostly unknown. In this work, Alsin RLD has been investigated through computational molecular modeling techniques to analyze its conformational dynamics and obtain a representative 3D model of this domain. Moreover, a putative phosphoinositide binding site has been proposed and PI(3)P interaction mechanism studied. Results highlight the substantial conformational stability of Alsin RLD secondary structure and suggest the role of one highly flexible region in the phosphoinositides selectivity of this domain

    Prediction of Protein–Protein Interactions Between Alsin DH/PH and Rac1 and Resulting Protein Dynamics

    Get PDF
    Alsin is a protein of 1,657 amino acids known for its crucial role in vesicular trafficking in neurons thanks to its ability to interact with two guanosine triphosphatases, Rac1 and Rab5. Evidence suggests that Rac1 can bind Alsin central region, composed by a Dbl Homology (DH) domain followed by a Pleckstrin Homology (PH) domain, leading to Alsin relocalization. However, Alsin three-dimensional structure and its relationship with known biological functions of this protein are still unknown. In this work, a homology model of the Alsin DH/PH domain was developed and studied through molecular dynamics both in the presence and in the absence of its binding partner, Rac1. Due to different conformations of DH domain, the presence of Rac1 seems to stabilize an open state of the protein, while the absence of its binding partner results in closed conformations. Furthermore, Rac1 interaction was able to reduce the fluctuations in the second conserved region of DH motif, which may be involved in the formation of a homodimer. Moreover, the dynamics of DH/PH was described through a Markov State Model to study the pathways linking the open and closed states. In conclusion, this work provided an all-atom model for the DH/PH domain of Alsin protein; moreover, molecular dynamics investigations suggested underlying molecular mechanisms in the signal transduction between Rac1 and Alsin, providing the basis for a deeper understanding of the whole structure–function relationship for Alsin protein

    Widespread nanoflare variability detected with Hinode/XRT in a solar active region

    Get PDF
    It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun's hot corona, but whether they are the explanation for most of the multi-million degree plasma has been a matter of ongoing debate. We here present evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on-board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multi-pixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using MonteCarlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable with a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.Comment: 26 pages, 7 figure
    • …
    corecore