47 research outputs found

    60 kD Ro and nRNP A Frequently Initiate Human Lupus Autoimmunity

    Get PDF
    Systemic lupus erythematosus (SLE) is a clinically heterogeneous, humoral autoimmune disorder. The unifying feature among SLE patients is the production of large quantities of autoantibodies. Serum samples from 129 patients collected before the onset of SLE and while in the United States military were evaluated for early pre-clinical serologic events. The first available positive serum sample frequently already contained multiple autoantibody specificities (65%). However, in 34 SLE patients the earliest pre-clinical serum sample positive for any detectable common autoantibody bound only a single autoantigen, most commonly 60 kD Ro (29%), nRNP A (24%), anti-phospholipids (18%) or rheumatoid factor (15%). We identified several recurrent patterns of autoantibody onset using these pre-diagnostic samples. In the serum samples available, anti-nRNP A appeared before or simultaneously with anti-nRNP 70 K in 96% of the patients who had both autoantibodies at diagnosis. Anti-60 kD Ro antibodies appeared before or simultaneously with anti-La (98%) or anti-52 kD Ro (95%). The autoantibody response in SLE patients begins simply, often binding a single specific autoantigen years before disease onset, followed by epitope spreading to additional autoantigenic specificities that are accrued in recurring patterns

    A miRNA Host Response Signature Accurately Discriminates Acute Respiratory Infection Etiologies

    Get PDF
    Background: Acute respiratory infections (ARIs) are the leading indication for antibacterial prescriptions despite a viral etiology in the majority of cases. The lack of available diagnostics to discriminate viral and bacterial etiologies contributes to this discordance. Recent efforts have focused on the host response as a source for novel diagnostic targets although none have explored the ability of host-derived microRNAs (miRNA) to discriminate between these etiologies.Methods: In this study, we compared host-derived miRNAs and mRNAs from human H3N2 influenza challenge subjects to those from patients with Streptococcus pneumoniae pneumonia. Sparse logistic regression models were used to generate miRNA signatures diagnostic of ARI etiologies. Generalized linear modeling of mRNAs to identify differentially expressed (DE) genes allowed analysis of potential miRNA:mRNA relationships. High likelihood miRNA:mRNA interactions were examined using binding target prediction and negative correlation to further explore potential changes in pathway regulation in response to infection.Results: The resultant miRNA signatures were highly accurate in discriminating ARI etiologies. Mean accuracy was 100% [88.8–100; 95% Confidence Interval (CI)] in discriminating the healthy state from S. pneumoniae pneumonia and 91.3% (72.0–98.9; 95% CI) in discriminating S. pneumoniae pneumonia from influenza infection. Subsequent differential mRNA gene expression analysis revealed alterations in regulatory networks consistent with known biology including immune cell activation and host response to viral infection. Negative correlation network analysis of miRNA:mRNA interactions revealed connections to pathways with known immunobiology such as interferon regulation and MAP kinase signaling.Conclusion: We have developed novel human host-response miRNA signatures for bacterial and viral ARI etiologies. miRNA host response signatures reveal accurate discrimination between S. pneumoniae pneumonia and influenza etiologies for ARI and integrated analyses of the host-pathogen interface are consistent with expected biology. These results highlight the differential miRNA host response to bacterial and viral etiologies of ARI, offering new opportunities to distinguish these entities

    Potential Cost-effectiveness of Early Identification of Hospital-acquired Infection in Critically Ill Patients

    Get PDF
    Limitations in methods for the rapid diagnosis of hospital-acquired infections often delay initiation of effective antimicrobial therapy. New diagnostic approaches offer potential clinical and cost-related improvements in the management of these infections. We developed a decision modeling framework to assess the potential cost-effectiveness of a rapid biomarker assay to identify hospital-acquired infection in high-risk patients earlier than standard diagnostic testing. The framework includes parameters representing rates of infection, rates of delayed appropriate therapy, and impact of delayed therapy on mortality, along with assumptions about diagnostic test characteristics and their impact on delayed therapy and length of stay. Parameter estimates were based on contemporary, published studies and supplemented with data from a four-site, observational, clinical study. Extensive sensitivity analyses were performed. The base-case analysis assumed 17.6% of ventilated patients and 11.2% of nonventilated patients develop hospital-acquired infection and that 28.7% of patients with hospital-acquired infection experience delays in appropriate antibiotic therapy with standard care. We assumed this percentage decreased by 50% (to 14.4%) among patients with true-positive results and increased by 50% (to 43.1%) among patients with false-negative results using a hypothetical biomarker assay. Cost of testing was set at 110/d.Inthebasecaseanalysis,amongventilatedpatients,dailydiagnostictestingstartingonadmissionreducedinpatientmortalityfrom12.3to11.9110/d. In the base-case analysis, among ventilated patients, daily diagnostic testing starting on admission reduced inpatient mortality from 12.3 to 11.9% and increased mean costs by 1,640 per patient, resulting in an incremental cost-effectiveness ratio of 21,389perlifeyearsaved.Amongnonventilatedpatients,inpatientmortalitydecreasedfrom7.3to7.121,389 per life-year saved. Among nonventilated patients, inpatient mortality decreased from 7.3 to 7.1% and costs increased by 1,381 with diagnostic testing. The resulting incremental cost-effectiveness ratio was 42,325perlifeyearsaved.Thresholdanalysesrevealedtheprobabilitiesofdevelopinghospitalacquiredinfectioninventilatedandnonventilatedpatientscouldbeaslowas8.4and9.842,325 per life-year saved. Threshold analyses revealed the probabilities of developing hospital-acquired infection in ventilated and nonventilated patients could be as low as 8.4 and 9.8%, respectively, to maintain incremental cost-effectiveness ratios less than 50,000 per life-year saved. Development and use of serial diagnostic testing that reduces the proportion of patients with delays in appropriate antibiotic therapy for hospital-acquired infections could reduce inpatient mortality. The model presented here offers a cost-effectiveness framework for future test development

    Temporal Dynamics of Host Molecular Responses Differentiate Symptomatic and Asymptomatic Influenza A Infection

    Get PDF
    Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza

    An integrated transcriptome and expressed variant analysis of sepsis survival and death

    Get PDF
    BackgroundSepsis, a leading cause of morbidity and mortality, is not a homogeneous disease but rather a syndrome encompassing many heterogeneous pathophysiologies. Patient factors including genetics predispose to poor outcomes, though current clinical characterizations fail to identify those at greatest risk of progression and mortality.MethodsThe Community Acquired Pneumonia and Sepsis Outcome Diagnostic study enrolled 1,152 subjects with suspected sepsis. We sequenced peripheral blood RNA of 129 representative subjects with systemic inflammatory response syndrome (SIRS) or sepsis (SIRS due to infection), including 78 sepsis survivors and 28 sepsis non-survivors who had previously undergone plasma proteomic and metabolomic profiling. Gene expression differences were identified between sepsis survivors, sepsis non-survivors, and SIRS followed by gene enrichment pathway analysis. Expressed sequence variants were identified followed by testing for association with sepsis outcomes.ResultsThe expression of 338 genes differed between subjects with SIRS and those with sepsis, primarily reflecting immune activation in sepsis. Expression of 1,238 genes differed with sepsis outcome: non-survivors had lower expression of many immune function-related genes. Functional genetic variants associated with sepsis mortality were sought based on a common disease-rare variant hypothesis. VPS9D1, whose expression was increased in sepsis survivors, had a higher burden of missense variants in sepsis survivors. The presence of variants was associated with altered expression of 3,799 genes, primarily reflecting Golgi and endosome biology.ConclusionsThe activation of immune response-related genes seen in sepsis survivors was muted in sepsis non-survivors. The association of sepsis survival with a robust immune response and the presence of missense variants in VPS9D1 warrants replication and further functional studies.Trial registrationClinicalTrials.gov NCT00258869. Registered on 23 November 2005.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-014-0111-5) contains supplementary material, which is available to authorized users

    A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection

    Get PDF
    The response to respiratory viruses varies substantially between individuals, and there are currently no known molecular predictors from the early stages of infection. Here we conduct a community-based analysis to determine whether pre- or early post-exposure molecular factors could predict physiologic responses to viral exposure. Using peripheral blood gene expression profiles collected from healthy subjects prior to exposure to one of four respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV), as well as up to 24 h following exposure, we find that it is possible to construct models predictive of symptomatic response using profiles even prior to viral exposure. Analysis of predictive gene features reveal little overlap among models; however, in aggregate, these genes are enriched for common pathways. Heme metabolism, the most significantly enriched pathway, is associated with a higher risk of developing symptoms following viral exposure. This study demonstrates that pre-exposure molecular predictors can be identified and improves our understanding of the mechanisms of response to respiratory viruses

    A crowdsourced analysis to identify ab initio molecular signatures predictive of susceptibility to viral infection

    Get PDF
    The response to respiratory viruses varies substantially between individuals, and there are currently no known molecular predictors from the early stages of infection. Here we conduct a community-based analysis to determine whether pre- or early post-exposure molecular factors could predict physiologic responses to viral exposure. Using peripheral blood gene expression profiles collected from healthy subjects prior to exposure to one of four respiratory viruses (H1N1, H3N2, Rhinovirus, and RSV), as well as up to 24 h following exposure, we find that it is possible to construct models predictive of symptomatic response using profiles even prior to viral exposure. Analysis of predictive gene features reveal little overlap among models; however, in aggregate, these genes are enriched for common pathways. Heme metabolism, the most significantly enriched pathway, is associated with a higher risk of developing symptoms following viral exposure. This study demonstrates that pre-exposure molecular predictors can be identified and improves our understanding of the mechanisms of response to respiratory viruses

    McClain, Micah T.

    No full text
    corecore