47 research outputs found

    Extensive Genetic Diversity And Host Range Of Rodent-Borne Coronaviruses

    No full text
    Abstract To better understand the genetic diversity, host associations and evolution of coronaviruses (CoVs) in China we analyzed a total of 696 rodents encompassing 16 different species sampled from Zhejiang and Yunnan provinces. Based on reverse transcriptase PCR-based CoV screening of fecal samples and subsequent sequence analysis of the RdRp gene, we identified CoVs in diverse rodent species, comprising Apodemus agrarius, Apodemus chevrieri, Apodemus latronum, Bandicota indica, Eothenomys cachinus, E. miletus, Rattus andamanesis, Rattus norvegicus, and R. tanezumi. CoVs were particularly commonplace in Apodemus chevrieri, with a detection rate of 12.44% (24/193). Genetic and phylogenetic analysis revealed the presence of three groups of CoVs carried by a range of rodents that were closely related to the Lucheng Rn rat coronavirus (LRNV), China Rattus coronavirus HKU24 (ChRCoV_HKU24) and Longquan Rl rat coronavirus (LRLV) identified previously. One newly identified A. chevrieri-associated virus closely related to LRNV lacked an NS2 gene. This virus had a similar genetic organization to AcCoV-JC34, recently discovered in the same rodent species in Yunnan, suggesting that it represents a new viral subtype. Notably, additional variants of LRNV were identified that contained putative nonstructural NS2b genes located downstream of the NS2 gene that were likely derived from the host genome. Recombination events were also identified in the ORF1a gene of Lijiang-71. In sum, these data reveal the substantial genetic diversity and genomic complexity of rodent-borne CoVs, and extend our knowledge of these major wildlife virus reservoirs

    Extensive Genetic Diversity and Host Range of Rodent-borne Coronaviruses

    No full text
    Abstract To better understand the genetic diversity, host association and evolution of coronaviruses (CoVs) in China we analyzed a total of 696 rodents encompassing 16 different species sampled from Zhejiang and Yunnan provinces. Based on the reverse transcriptase PCR-based CoV screening CoVs of fecal samples and subsequent sequence analysis of the RdRp gene, we identified CoVs in diverse rodent species, comprising Apodemus agrarius, Apodemus latronum, Bandicota indica, Eothenomys miletus, E. eleusis, Rattus andamanesis, Rattus norvegicus , and R. tanezumi. Apodemus chevrieri was a particularly rich host, harboring 25 rodent CoVs. Genetic and phylogenetic analysis revealed the presence of three groups of CoVs carried by a range of rodents that were closely related to the Lucheng Rn rat coronavirus (LRNV), China Rattus coronavirus HKU24 (ChRCoV_HKU24) and Longquan Rl rat coronavirus (LRLV) identified previously. One newly identified A. chevrieri -associated virus closely related to LRNV lacked an NS2 gene. This virus had a similar genetic organization to AcCoV-JC34, recently discovered in the same rodent species in Yunnan, suggesting that it represents a new viral subtype. Notably, additional variants of LRNV were identified that contained putative nonstructural NS2b genes located downstream of the NS2 gene that were likely derived from the host genome. Recombination events were also identified in the ORF1a gene of Lijiang-71. In sum, these data reveal the substantial genetic diversity and genomic complexity of rodent-borne CoVs, and greatly extend our knowledge of these major wildlife virus reservoirs

    Lymphadenectomy in Primary Fallopian Tube Cancer is Associated with Improved Survival

    No full text
    Background and Objectives Primary fallopian tube cancer (PFTC) shares the same diagnostic and management guidelines with epithelial ovarian cancer (EOC). The LION trail raised concerns regarding the role of systematic pelvic and para-aortic lymphadenectomy during debulking surgery. We aimed to evaluate the significance of lymphadenectomy in PFTC survival. Methods This retrospective study analyzed the clinical features and survival of patients with PFTC who underwent primary surgery in our center between January 2013 and October 2020. Results Sixty-one patients diagnosed with PFTC were included in the study. Twenty-five (41.0%, 25/61) were diagnosed with FIGO (International Federation of Gynecology and Obstetrics) stages I/II and 36 (59.0%, 36/61) were diagnosed with stage III/IV. Twenty-nine (47.5%, 29/61) underwent pelvic lymphadenectomy with or without para-aortic lymphadenectomy, among which 12 (41.4%, 12/29) had lymph node metastasis confirmed by postoperative pathology. The mean progression-free survival was 60.4 months in the lymphadenectomy group and 37.8 months in the no-lymphadenectomy group (p = 0.042, HR 0.374, 95% CI 0.145–0.966). Conclusions PFTC is often diagnosed earlier and has a better prognosis than EOC. Most patients with PFTC would benefit from lymphadenectomy. However, the extent to which this association translates to a more diverse population needs to be further identified

    Full-Color-Tunable Nanohydrogels as High-Stability Intracellular Nanothermometers

    No full text
    Full-color-tunable hydrogels with ultrahigh stability can be used in various fields, including intracellular temperature sensing. However, constructing full-color-tunable organic nanohydrogels with excellent biocompatibility and stability for intracellular temperature sensing remains a great challenge. Here, we report a full-color-tunable nanohydrogel with ultrahigh stability as an intracellular nanothermometer. Three types of temperature-sensitive polymers with red, green, and blue fluorescence were synthesized. Through easy mixing of these three polymers with regulation of the mass ratio, these polymers can be encoded to full-color-tunable fluorescent nanohydrogels, including nanohydrogels with white-light emission (NWLEs), with sizes of about 200 nm in aqueous media. Further study suggested that the as-obtained NWLEs exhibited good performance in intracellular temperature sensing because of their ultrahigh stability on their fluorescence properties and morphologies

    Baicalin administration could rescue high glucose-induced craniofacial skeleton malformation by regulating neural crest development

    No full text
    Hyperglycemia in pregnancy can increase the risk of congenital disorders, but little is known about craniofacial skeleton malformation and its corresponding medication. Our study first used meta-analysis to review the previous findings. Second, baicalin, an antioxidant, was chosen to counteract high glucose-induced craniofacial skeleton malformation. Its effectiveness was then tested by exposing chicken embryos to a combination of high glucose (HG, 50 mM) and 6 μM baicalin. Third, whole-mount immunofluorescence staining and in situ hybridization revealed that baicalin administration could reverse HG-inhibited neural crest cells (NCC) delamination and migration through upregulating the expression of Pax7 and Foxd3, and mitigate the disordered epithelial-mesenchymal transition (EMT) process by regulating corresponding adhesion molecules and transcription factors (i.e., E-cadherin, N-cadherin, Cadherin 6B, Slug and Msx1). Finally, through bioinformatic analysis and cellular thermal shift assay, we identified the AKR1B1 gene as a potential target. In summary, these findings suggest that baicalin could be used as a therapeutic agent for high glucose-induced craniofacial skeleton malformation

    A Ten-MicroRNA Signature Identified from a Genome-Wide MicroRNA Expression Profiling in Human Epithelial Ovarian Cancer

    No full text
    <div><p>Epithelial ovarian cancer (EOC) is the most common gynecologic malignancy. To identify the micro-ribonucleic acids (miRNAs) expression profile in EOC tissues that may serve as a novel diagnostic biomarker for EOC detection, the expression of 1722 miRNAs from 15 normal ovarian tissue samples and 48 ovarian cancer samples was profiled by using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. A ten-microRNA signature (hsa-miR-1271-5p, hsa-miR-574-3p, hsa-miR-182-5p, hsa-miR-183-5p, hsa-miR-96-5p, hsa-miR-15b-5p, hsa-miR-182-3p, hsa-miR-141-5p, hsa-miR-130b-5p, and hsa-miR-135b-3p) was identified to be able to distinguish human ovarian cancer tissues from normal tissues with 97% sensitivity and 92% specificity. Two miRNA clusters of miR183-96-183 (miR-96-5p, and miR-182, miR183) and miR200 (miR-141-5p, miR200a, b, c and miR429) are significantly up-regulated in ovarian cancer tissue samples compared to those of normal tissue samples, suggesting theses miRNAs may be involved in ovarian cancer development.</p></div
    corecore