1,516 research outputs found

    Tree of Uncertain Thoughts Reasoning for Large Language Models

    Full text link
    While the recently introduced Tree of Thoughts (ToT) has heralded advancements in allowing Large Language Models (LLMs) to reason through foresight and backtracking for global decision-making, it has overlooked the inherent local uncertainties in intermediate decision points or "thoughts". These local uncertainties, intrinsic to LLMs given their potential for diverse responses, remain a significant concern in the reasoning process. Addressing this pivotal gap, we introduce the Tree of Uncertain Thoughts (TouT) - a reasoning framework tailored for LLMs. Our TouT effectively leverages Monte Carlo Dropout to quantify uncertainty scores associated with LLMs' diverse local responses at these intermediate steps. By marrying this local uncertainty quantification with global search algorithms, TouT enhances the model's precision in response generation. We substantiate our approach with rigorous experiments on two demanding planning tasks: Game of 24 and Mini Crosswords. The empirical evidence underscores TouT's superiority over both ToT and chain-of-thought prompting methods

    Distributed watermarking for secure control of microgrids under replay attacks

    Full text link
    The problem of replay attacks in the communication network between Distributed Generation Units (DGUs) of a DC microgrid is examined. The DGUs are regulated through a hierarchical control architecture, and are networked to achieve secondary control objectives. Following analysis of the detectability of replay attacks by a distributed monitoring scheme previously proposed, the need for a watermarking signal is identified. Hence, conditions are given on the watermark in order to guarantee detection of replay attacks, and such a signal is designed. Simulations are then presented to demonstrate the effectiveness of the technique

    Improvement of 2-O-α-D-Glucopyranosyl-L-Ascorbic Acid Biosynthesis Using Ultrasonic Radiation

    Get PDF
    Purpose: To improve 2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G) production using ultrasonic radiation (UR) treatment.Methods: The production of AA-2G using UR or ultrasonic radiation with shaking (URS) at 150 rpm, at varying power (100 − 500 W), temperature (30 – 65 °C), pH 4.0 −9.0, and time (2−24 h) was compared with that produced in a shaker water bath (SWB) in a reaction catalyzed by cyclodextrin glucanotransferase (CGTase) from Bacillus sp. SK13.002. The effect of URS on CGTase activity was also measured.Results: Maximum AA-2G production using UR at a power of 400 W, temperature of 37 oC, and pH 8.0 for 18 h was 5.69 ± 0.2 g/L, while URS at 500 W/150 rpm and 37 °C for 14 h yielded 7.05 ± 0.21 g/L of AA-2G. URS at 500 W/150 rpm, 55 °C, and pH 8.0 for 6 h yielded 6.6 ± 0.25 g/L of AA-2G. URS at 37 and 55 °C significantly increased CGTase activity. AA-2G yield using UR (400 W) was decreased by 9.7 % compared to that produced by SWB. However, the AA-2G yield using USS (500 W/150 rpm) at 37 and 55 °C increased by 11.9 and 4.8 %, respectively, with a reduction in process time of 41.7 and 75 %, respectively, compared to that previously produced by SWB.Conclusion: These results indicate that UR combined with shaking improves AA-2G production.Keywords: 2-O-α-D-glucopyranosyl-L-ascorbic acid, Ultrasonic radiation, Transglycosylation, Bacillus sp. SK13.00

    CCL21/CCR7 enhances the proliferation, migration, and invasion of human bladder cancer T24 cells

    Get PDF
    Objective To investigate the effects of CCL21/CCR7 on the proliferation, migration, and invasion of T24 cells and the possible associated mechanisms: expression of MMP-2 and MMP-9, and regulation of BCL-2 and BAX proteins. Methods T24 cells received corresponding treatments including vehicle control, antibody (20ng/mL CCR7 antibody and 50 ng/ml CCL21), and 50, 100. and 200 ng/ml CCL21. Proliferation was evaluated by MTT assay; cell migration and invasion were assayed using a transwell chamber. Cell apoptosis was induced by Adriamycin (ADM). The rate of cell apoptosis was examined by flow cytometry using annexin V-FITC/PI staining. Western-blot was used to analyze MMP-2 and MMP-9 and BCL-2 and BAX proteins. Results CCL21 promoted T24 cell proliferation in concentration-dependent manner with that 200 ng/mL induced the largest amount of proliferation. Significant differences of cell migration were found between CCL21treatment groups and the control group in both the migration and invasion studies (P \u3c 0.001 for all). The expressions of MMP-2 and MMP-9 proteins were significantly increased after CCL21 treatment (p \u3c 0.05 for all). Protein expression of Bcl-21 follows an ascending trend while the expression of Bax follows a descending trend as the concentration of CCL21 increases. No difference was found between the control group and antibody group for all assessments. Conclusion CCL21/CCR7 promoted T24 cell proliferation and enhanced its migration and invasion via the increased expression of MMP-2 and MMP-9. CCL21/CCR7 had antiapoptotic activities on T24 cells via regulation of Bcl-2 and Bax proteins. CCL21/CCR7 may promote bladder cancer development and metastasis

    Canalization effect in the coagulation cascade and the interindividual variability of oral anticoagulant response. a simulation Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing the predictability and reducing the rate of side effects of oral anticoagulant treatment (OAT) requires further clarification of the cause of about 50% of the interindividual variability of OAT response that is currently unaccounted for. We explore numerically the hypothesis that the effect of the interindividual expression variability of coagulation proteins, which does not usually result in a variability of the coagulation times in untreated subjects, is unmasked by OAT.</p> <p>Results</p> <p>We developed a stochastic variant of the Hockin-Mann model of the tissue factor coagulation pathway, using literature data for the variability of coagulation protein levels in the blood of normal subjects. We simulated <it>in vitro </it>coagulation and estimated the Prothrombin Time and the INR across a model population. In a model of untreated subjects a "canalization effect" can be observed in that a coefficient of variation of up to 33% of each protein level results in a simulated INR of 1 with a clinically irrelevant dispersion of 0.12. When the mean and the standard deviation of vitamin-K dependent protein levels were reduced by 80%, corresponding to the usual Warfarin treatment intensity, the simulated INR was 2.98 ± 0.48, a clinically relevant dispersion, corresponding to a reduction of the canalization effect.</p> <p>Then we combined the Hockin-Mann stochastic model with our previously published model of population response to Warfarin, that takes into account the genetical and the phenotypical variability of Warfarin pharmacokinetics and pharmacodynamics. We used the combined model to evaluate the coagulation protein variability effect on the variability of the Warfarin dose required to reach an INR target of 2.5. The dose variance when removing the coagulation protein variability was 30% lower. The dose was mostly related to the pretreatment levels of factors VII, X, and the tissue factor pathway inhibitor (TFPI).</p> <p>Conclusions</p> <p>It may be worth exploring in experimental studies whether the pretreatment levels of coagulation proteins, in particular VII, X and TFPI, are predictors of the individual warfarin dose, even though, maybe due to a canalization-type effect, their effect on the INR variance in untreated subjects appears low.</p

    Effectiveness of artificial intelligence-assisted ultrasound for breast cancer screening in Chinese women

    Get PDF
    Background and purpose: Artificial intelligence (AI) technology is increasingly being used in the medical field. This study aimed to assess the effectiveness of artificial intelligence ultrasound system for identifying breast lesions in Chinese women and its role in breast cancer early detection. Methods: A prospective study was conducted on healthy women aged 35-74 years who came to Fudan University Shanghai Cancer Center from August 2020 to December 2020 for breast ultrasonography. All the women were examined by AI-assisted ultrasound first, and then by conventional ultrasonography. We compared the differences between AI-assisted ultrasound and conventional ultrasonography in identifying breast lesions in Chinese women. One year later, we looked up the hospital medical history and Shanghai Cancer Registration Management System for the final diagnosis of breast cancer. Results: A total of 360 women were included in the study and received breast examinations using both AI-assisted ultrasound and conventional ultrasound. A total of 2 504 breast lesions were detected, of which, 2 217 were detected by AI-assisted ultrasound, with a lesion recognition rate of 88.5%. Conventional ultrasound identified 1 090 lesions, with a lesion recognition rate of 43.5%. Using conventional ultrasound as the standard, the sensitivity and specificity of AI-assisted ultrasound for Breast Imaging Reporting and Data System (BI-RADS) level 4 and above lesions were 93.3% (95% CI: 80.7-98.3) and 100.0% (95% CI: 99.5-100.0), respectively. During one-year follow-up, 10 patients were diagnosed with breast cancer, and 8 of whom were identified by both AI-assisted ultrasound and conventional B ultrasound. The sensitivity of AI-assisted ultrasound and conventional ultrasound for breast cancer was 80.0% (95% CI: 44.2-96.4), and the specificity was 88.6% (95% CI: 84.6-91.6). Conclusion: AI-assisted ultrasound has good identification ability for breast lesions in Chinese women. The recognition ability for high-risk breast lesions (BI-RADS 4A and above) and early breast cancer is equivalent to that of conventional ultrasound, which is suitable for breast cancer screening in large-scale community of women with general risk

    Reinforcement learning for personalized dialogue management

    Get PDF
    Language systems have been of great interest to the research community and have recently reached the mass market through various assistant platforms on the web. Reinforcement Learning methods that optimize dialogue policies have seen successes in past years and have recently been extended into methods that personalize the dialogue, e.g. take the personal context of users into account. These works, however, are limited to personalization to a single user with whom they require multiple interactions and do not generalize the usage of context across users. This work introduces a problem where a generalized usage of context is relevant and proposes two Reinforcement Learning (RL)-based approaches to this problem. The first approach uses a single learner and extends the traditional POMDP formulation of dialogue state with features that describe the user context. The second approach segments users by context and then employs a learner per context. We compare these approaches in a benchmark of existing non-RL and RL-based methods in three established and one novel application domain of financial product recommendation. We compare the influence of context and training experiences on performance and find that learning approaches generally outperform a handcrafted gold standard

    On the Perturbative Stability of Quantum Field Theories in de Sitter Space

    Full text link
    We use a field theoretic generalization of the Wigner-Weisskopf method to study the stability of the Bunch-Davies vacuum state for a massless, conformally coupled interacting test field in de Sitter space. We find that in λϕ4\lambda \phi^4 theory the vacuum does {\em not} decay, while in non-conformally invariant models, the vacuum decays as a consequence of a vacuum wave function renormalization that depends \emph{singularly} on (conformal) time and is proportional to the spatial volume. In a particular regularization scheme the vacuum wave function renormalization is the same as in Minkowski spacetime, but in terms of the \emph{physical volume}, which leads to an interpretation of the decay. A simple example of the impact of vacuum decay upon a non-gaussian correlation is discussed. Single particle excitations also decay into two particle states, leading to particle production that hastens the exiting of modes from the de Sitter horizon resulting in the production of \emph{entangled superhorizon pairs} with a population consistent with unitary evolution. We find a non-perturbative, self-consistent "screening" mechanism that shuts off vacuum decay asymptotically, leading to a stationary vacuum state in a manner not unlike the approach to a fixed point in the space of states.Comment: 36 pages, 4 figures. Version to appear in JHEP, more explanation

    Multilayer passive radiative selective cooling coating based on Al/SiO2/SiNx/SiO2/TiO2/SiO2 prepared by dc magnetron sputtering

    Get PDF
    A multilayer passive radiative selective cooling coating based on Al/SiO2/SiNx/SiO2/TiO2/SiO2 prepared by dc magnetron sputtering is presented. The design was first theoretically optimized using the optical constants, refractive index and extinction coefficient, of thin single layers. The spectral optical constants in the wavelength range from 0.3 to 27 ”m were calculated from the transmittance and reflectance data of thin single layers deposited on silicon and glass substrates. The samples were characterized by Scanning Electron Microscopy, X-ray diffraction, Fourier-transform Infrared Spectroscopy and UV–VIS–NIR spectroscopy. It is shown that the TiO2 layer presents a partially rutile phase polycrystalline structure and a higher refractive index than amorphous SiO2 and SiNx layers in the spectral range from 0.3 to 2.5 ÎŒm. The cooling device was deposited on copper substrates and a thin low-density polyethylene foil with high transmittance in the 8 to 13 ”m spectral range was used as convection cover material. The device is characterized by both low reflectance (high emittance) in the sky atmospheric window (wavelength range from 8 to 13 ”m) and high hemispherical reflectance elsewhere, allowing for temperature drops of average 7.4 °C at night-time in winter, which corresponds to a net cooling power of ~43 W m−2. Further, a temperature drop of 2.5 °C was obtained during winter daytime.FCT in the framework of the Strategic Funding UID/FIS/04650/2013 and the financial support of FCT, POCI and PORL operational programs through the project POCI-01-0145-FEDER-016907 (PTDC/CTM-ENE/2892/2014), co-financed by European community fund FEDE
    • 

    corecore