38 research outputs found

    An integrated method for urban main-road centerline extraction from optical remotely sensed imagery

    No full text
    International audienceRoad information has a fundamental role in modern society. Road extraction from optical satellite images is an economic and efficient way to obtain and update a transportation database. This paper presents an integrated method to extract urban main-road centerlines from satellite optical images. The proposed method has four main steps. First, general adaptive neighborhood is introduced to implement spectral-spatial classification to segment the images into two categories: road and nonroad groups. Second, road groups and homogeneous property, measured by local Geary's C, are fused to improve road-group accuracy. Third, road shape features are used to extract reliable road segments. Finally, local linear kernel smoothing regression is performed to extract smooth road centerlines. Road networks are then generated using tensor voting. The proposed method is tested and subsequently validated using a large set of multispectral high-resolution images. A comparison with several existing methods shows that the proposed method is more suitable for urban main-road centerline extraction

    Confidence analysis of standard deviational ellipse and its extension into higher dimensional euclidean space.

    No full text
    Standard deviational ellipse (SDE) has long served as a versatile GIS tool for delineating the geographic distribution of concerned features. This paper firstly summarizes two existing models of calculating SDE, and then proposes a novel approach to constructing the same SDE based on spectral decomposition of the sample covariance, by which the SDE concept is naturally generalized into higher dimensional Euclidean space, named standard deviational hyper-ellipsoid (SDHE). Then, rigorous recursion formulas are derived for calculating the confidence levels of scaled SDHE with arbitrary magnification ratios in any dimensional space. Besides, an inexact-newton method based iterative algorithm is also proposed for solving the corresponding magnification ratio of a scaled SDHE when the confidence probability and space dimensionality are pre-specified. These results provide an efficient manner to supersede the traditional table lookup of tabulated chi-square distribution. Finally, synthetic data is employed to generate the 1-3 multiple SDEs and SDHEs. And exploratory analysis by means of SDEs and SDHEs are also conducted for measuring the spread concentrations of Hong Kong's H1N1 in 2009

    Comparative Analysis for Robust Penalized Spline Smoothing Methods

    Get PDF
    Smoothing noisy data is commonly encountered in engineering domain, and currently robust penalized regression spline models are perceived to be the most promising methods for coping with this issue, due to their flexibilities in capturing the nonlinear trends in the data and effectively alleviating the disturbance from the outliers. Against such a background, this paper conducts a thoroughly comparative analysis of two popular robust smoothing techniques, the M-type estimator and S-estimation for penalized regression splines, both of which are reelaborated starting from their origins, with their derivation process reformulated and the corresponding algorithms reorganized under a unified framework. Performances of these two estimators are thoroughly evaluated from the aspects of fitting accuracy, robustness, and execution time upon the MATLAB platform. Elaborately comparative experiments demonstrate that robust penalized spline smoothing methods possess the capability of resistance to the noise effect compared with the nonrobust penalized LS spline regression method. Furthermore, the M-estimator exerts stable performance only for the observations with moderate perturbation error, whereas the S-estimator behaves fairly well even for heavily contaminated observations, but consuming more execution time. These findings can be served as guidance to the selection of appropriate approach for smoothing the noisy data

    Study on the Uncertainty of Machine Learning Model for Earthquake-Induced Landslide Susceptibility Assessment

    No full text
    The landslide susceptibility assessment based on machine learning can accurately predict the probability of landslides happening in the region. However, there are uncertainties in machine learning applications. In this paper, Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR) are used to assess the landslide susceptibility in order to discuss the model uncertainty. The model uncertainty is explained in three ways: landslide susceptibility zoning result, risk area (high and extremely high) statistics, and the area under Receiver Operating Characteristic Curve (ROC). The findings indicate that: (1) Landslides are restricted by influence factors and have the distribution law of relatively concentrated and strip-shaped distribution in space. (2) The percentage of real landslide in risk area is 86%, 87%, 82%, and 61% in SVM, RF, LR, and ANN, respectively. The area under ROC of RF, SVM, LR, and ANN, respectively, is 90.92%, 80.45%, 73.75%, and 71.95%. (3) Compared with the prediction accuracy of the training set and test set from the same earthquake, the accuracy of landslide prediction in the different earthquakes is reduced

    Accuracy Assessment Measures for Object Extraction from Remote Sensing Images

    No full text
    Object extraction from remote sensing images is critical for a wide range of applications, and object-oriented accuracy assessment plays a vital role in guaranteeing its quality. To evaluate object extraction accuracy, this paper presents several novel accuracy measures that differ from the norm. First, area-based and object number-based accuracy assessment measures are given based on a confusion matrix. Second, different accuracy assessment measures are provided by combining the similarities of multiple features. Third, to improve the reliability of the object extraction accuracy assessment results, two accuracy assessment measures based on object detail differences are designed. In contrast to existing measures, the presented method synergizes the feature similarity and distance difference, which considerably improves the reliability of object extraction evaluation. Encouraging results on two QuickBird images indicate the potential for further use of the presented algorithm

    An Integrated Method for Urban Main-Road Centerline Extraction From Optical Remotely Sensed Imagery

    No full text
    corecore