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Smoothing noisy data is commonly encountered in engineering domain, and currently robust penalized regression spline models
are perceived to be themost promisingmethods for coping with this issue, due to their flexibilities in capturing the nonlinear trends
in the data and effectively alleviating the disturbance from the outliers. Against such a background, this paper conducts a thoroughly
comparative analysis of two popular robust smoothing techniques, the𝑀-type estimator and 𝑆-estimation for penalized regression
splines, both of which are reelaborated starting from their origins, with their derivation process reformulated and the corresponding
algorithms reorganized under a unified framework. Performances of these two estimators are thoroughly evaluated from the
aspects of fitting accuracy, robustness, and execution time upon the MATLAB platform. Elaborately comparative experiments
demonstrate that robust penalized spline smoothing methods possess the capability of resistance to the noise effect compared
with the nonrobust penalized LS spline regression method. Furthermore, the 𝑀-estimator exerts stable performance only for
the observations with moderate perturbation error, whereas the 𝑆-estimator behaves fairly well even for heavily contaminated
observations, but consumingmore execution time.These findings can be served as guidance to the selection of appropriate approach
for smoothing the noisy data.

1. Introduction

Penalized spline smoothing technique has already been per-
ceived as a popular nonparametric smoothing approach for
smoothing noisy data in engineering domain [1–3] during the
past 20 years due to its ease of fitting, flexible choice of the
inner knots, and smoothing parameter. The ideas of employ-
ing the combination of regression splines, with substantially
smaller number of inner knots than the sample size, and the
introduction of the penalized parameter, which compromises
the fitting accuracy and the smoothness of the regression
curve, can be traced back to at least O’Sullivan [4] who uti-
lized a cubic B-spline basis for estimation in ill-posed inverse
problems.

During the early stage, Kelly and Rice [5] and Besse et al.
[6] approximated the smoothing splines by the hybrid splines
equippedwith the inner knots equal to the data samples and a
penalty parameter for determining the smoothing amount of
regression curve, which was usually calculated according to
the (generalized) cross-validation criterion. Other criterions

included the Mallows’ 𝐶𝑝 criterion [7] and the Akaike infor-
mation criterion [8, 9]. Besides, Eilers and Marx [10] pro-
posed flexible criteria for choosing an optimal penalty param-
eter of dealing with the B-splines coefficients.Wand [11] addi-
tionally derived a quick and simple formula approximation to
the optimal penalty parameter for the penalized spline regres-
sion. Moreover, Ruppert and Carroll [12] investigated the
spatially varying penalties and Ruppert [13] recommended
the selection of designed inner knots. More discussion and
examples on the penalized regression spline models can be
referred to the excellent monograph written by Ruppert et al.
[14].

The subsequent explorations on penalized spline smooth-
ing remained a hot area arousing great interests from both
theory researchers and practice engineers for several years.
For example, the theoretical aspects and practical applica-
tions of penalized spline smoothing were fully discussed in a
dissertation composed by Krivobokova [15] from financial
mathematics. Crainiceanu et al. [16] investigated the imple-
mentation of nonparametric Bayesian analysis for penalized
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spline regression using WinBUGS, in which the Markov
Chain Monte Carlo (MCMC) mixing operator was sub-
stantially improved by employing the low rank thin plate
splines basis. Besides, Marra and Radice [2] presented an
accessible overview of generalized additive models based on
the penalized regression splines and explored their potential
applications into medical research. Generally, the penalized
regression spline model is referred to the estimation of
univariate smooth functions based on noisy data. However,
some researchers also put forward its extension into higher
dimension. Typical models include the thin plate regression
splines [17] which are low rank smoothers obtained by
truncating the basis of standard thin plate splines thereby
requiring less computation to fit to large data sets and the
penalized bivariate splines [18] with application on triangu-
lations for irregular regions.

The regression curve for penalized spline is established
by minimizing the sum of squared residuals subject to a
bound on the size of the spline coefficients. Accordingly, a
closed-form formula can be derived from the penalized min-
imization problem. Apparently, such penalized least squares
regression splines cannot be resistant to the disturbance
from the outliers. A simple and direct idea is to replace the
squared residuals by some slower-increasing loss function
similarly as employed in𝑀-regression estimator [19, 20] for
alleviating the outlier effects from the atypical observations.
Early research regarding the 𝑀-type smoothing technique
started from Huber et al. [21] and Cox’s [22] work on cubic
regression splines. Another robust model can be the 𝑆-
estimation [23] which possesses high-breakdown point and
minimizes the residual scale in an extremely robust manner.
A fast algorithm has been created by Salibian-Barrera and
Yohai [24] for computing the 𝑆-regression estimates. These
two estimators have been elaborately compared in the linear
regression by ÇetIn and Toka [25] with the results indicating
that the 𝑆-estimator is more capable of resisting the outlier
disturbance compared with the𝑀-estimator but with lower
efficiency.

Up until almost a decade ago, however, little work has
been delivered taking the penalized spline regression into
the category of robust estimation. Oh et al. [26] suggested
a robust smoothing approach implemented to the period
analysis of variable stars by simply imposing Huber’s favorite
loss function upon the generalized cross-validation criterion.
And Lee and Oh [27] proposed an iterative algorithm for cal-
culating the𝑀-type estimator of penalized regression splines
via introducing the empirical pseudodata. Afterwards, Finger
[28] confirmed that such 𝑀-type estimator compromised
between the very robust estimators and the very efficient least
square type estimators for the penalized spline regressions
when investigating the performance of different estimation
techniques in crop insurance applications. Meanwhile, by
replacing the least squares estimation with a suitable 𝑆-
estimator, Tharmaratnam et al. [29] put forward an 𝑆-
estimation for penalized regression spline as well, which
proves to be equivalent to a weighted penalized least squares
regression and behaves well even for heavily contaminated
observations.

Against such a background, this paper performs a thor-
oughly comparative analysis mainly based on these two
popular robust smoothing techniques, the𝑀-type estimator
and 𝑆-estimation for penalized regression splines, both of
which are reelaborated starting from their origins, with
their derivation process reformulated and the corresponding
algorithms reorganized under a unified framework. The rest
of the paper is organized as follows. Section 2 reelaborates
the𝑀-type estimator and 𝑆-estimation for penalized regres-
sion splines, starting from the least squares estimator and
reorganizes the corresponding algorithms within a unified
framework. Section 3 describes the comparative experiments
upon both simulated synthetic data and one real weather
balloon data set. Concluding remarks are included in the end
of Section 4.

2. Robust Penalized Regression Splines

The following discussion is devoted to the reelaboration
of penalized regression splines starting from the origin,
with their derivation processes reformulated and the corre-
sponding practical algorithms reorganized under a unified
framework.

The idea of the penalized regression spline beginswith the
following model:

𝑦𝑖 ∼ 𝑁(𝑚 (𝑥𝑖) , 𝜎
2

𝜀
) , 𝑖 = 1, . . . , 𝑛, (1)

where 𝑚(𝑥) is supposed to be a smooth but unknown
regression function which needs to be estimated based on the
sample observations (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 𝑛 and 𝜎

2

𝜀
denotes the

constant variance of the random deviation error between the
response variable and the regression function𝑚(𝑥).

It is a flexible concept as regards the penalized spline
smoothing since different basis function may correspond to
different penalized spline smoothing regression function. A
common selection is the truncated polynomial bases, but
other choices can also be explored straightway similarly

𝑚(𝑥;𝛽) = 𝛽0 + 𝛽1𝑥 + ⋅ ⋅ ⋅ + 𝛽𝑝𝑥
𝑝
+

𝐾

∑

𝑗=1

𝛽𝑝+𝑗(𝑥 − 𝜅𝑗)
𝑝

+
, (2)

where (𝑥 − 𝜅𝑗)+ = max(𝑥 − 𝜅𝑗, 0) and 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑝+𝐾)
𝑇

denotes a vector of regression coefficients, 𝜅𝑗, . . . , 𝜅𝐾 is the
specified inner knots, and 𝑝 indicates the exponential order
for truncated power basis.

2.1. Penalized Least Squares Regression Splines. Given a group
of sample observations (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), an increasingly
popular way for obtaining the estimation of 𝑚(⋅) is via
transforming it into the category of a least squares problem,
where we need to seek out themember from the class𝑚(𝑥;𝛽)
which minimizes the sum of squared residuals. To prevent
overfitting, a constraint on the spline coefficients is always
imposed; that is,

min
𝛽∈R𝑝+𝐾+1

𝑛

∑

𝑖=1

(𝑦𝑖 − 𝑚 (𝑥𝑖,𝛽))
2
, subject to

𝐾

∑

𝑗=1

𝛽
2

𝑝+𝑗
≤ 𝐶,

(3)
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for some constant 𝐶 > 0 as discussed in Ruppert et al. [14].
Thus, by employing the Lagrange multiplier, the coefficients
of the penalized least squares regression spline 𝛽̂LS are equiv-
alent to the minimizer of

𝑛

∑

𝑖=1

(𝑦𝑖 − 𝑚 (𝑥𝑖;𝛽))
2
+ 𝜆

𝐾

∑

𝑗=1

𝛽
2

𝑝+𝑗
, (4)

for some smoothing (penalty) parameter 𝜆 ≥ 0 with respect
to𝛽, which compromises the bias and variance tradeoff of the
fitted regression spline curve.

Introduce𝐹(𝑥) = (1, 𝑥, . . . , 𝑥𝑝, (𝑥 − 𝜅1)
𝑝

+, . . . , (𝑥 − 𝑘𝐾)
𝑝

+)
𝑇,

the spline design matrix

X = (𝐹(𝑥1)
𝑇
, . . . , 𝐹(𝑥𝑛)

𝑇
)
𝑇

= (

1 𝑥1 ⋅ ⋅ ⋅ 𝑥
𝑝

1
(𝑥1 − 𝜅1)

𝑝

+
⋅ ⋅ ⋅ (𝑥1 − 𝜅𝐾)

𝑝

+

...
... d

...
... d

...
1 𝑥𝑛 ⋅ ⋅ ⋅ 𝑥

𝑝

𝑛
(𝑥𝑛 − 𝜅1)

𝑝

+
⋅ ⋅ ⋅ (𝑥𝑛 − 𝜅𝐾)

𝑝

+

),

(5)

the vector of responses y = (𝑦1, . . . , 𝑦𝑛)
𝑇, and the diagonal

matrix𝐷 = diag(0(𝑝+1)×1, 1𝐾×1) which indicates that only the
spline coefficients are penalized.Thus, the closed-formmini-
mizer for the objective function (4) can arrive by direct calcu-
lations; namely,

𝛽̂LS = (X
𝑇X+𝜆𝐷)

−1

X𝑇y. (6)

Consequently, the corresponding estimation vector m̂ =

(𝑚̂(𝑥1), . . . , 𝑚̂(𝑥𝑛))
𝑇 generated by the penalized least square

regression spline can be represented as

m̂LS = X𝛽̂LS = X(X𝑇X + 𝜆𝐷)
−1

X𝑇y. (7)

For figuring out the penalty parameter 𝜆 in (7), the (general-
ized) cross-validation technique is employed hereafter, which
is computed by leave-one-out of the residual from sum of
squares so as to avoid overfitting in the regression spline.The
cross-validation criterion is given by

CV (𝜆) = 1
𝑛

𝑛

∑

𝑖=1

(𝑦𝑖 − 𝑚̂−𝑖(𝑥𝑖; 𝜆))
2
, (8)

where 𝑚̂−𝑖(𝑥𝑖; 𝜆) is the regression spline estimated by leaving
out the 𝑖th observation point. The optimized penalty param-
eter 𝜆 can be calculated byminimizing CV(𝜆) over 𝜆 ≥ 0. For
the linear smoothing matrix, 𝐻𝜆 = X(X𝑇X + 𝜆𝐷)−1X𝑇, and
it can be verified [14] that

𝑚̂−𝑖 (𝑥𝑖; 𝜆) = ∑

𝑗 ̸= 𝑖

(
𝐻
𝑖𝑗

𝜆

1 − 𝐻
𝑖𝑗

𝜆

𝑦𝑖) . (9)

Substitution of 𝑚̂−𝑖(𝑥𝑖; 𝜆) in (8) with the formula (9) results
in

CV (𝜆) = 1
𝑛

𝑛

∑

𝑖=1

(
𝑦𝑖 − 𝑚̂ (𝑥𝑖; 𝜆)

1 − 𝐻
𝑖𝑖

𝜆

)

2

. (10)

The generalized cross-validation criterion is proposed [30]
simply by replacing 𝐻𝑖𝑖

𝜆
in (10) with their average tr(𝐻𝜆)/𝑛;

namely,

GCV (𝜆) = 𝑛
𝑛

∑

𝑖=1

(
𝑦𝑖 − 𝑚̂ (𝑥𝑖; 𝜆)

𝑛 − tr(𝐻𝜆)
)

2

. (11)

2.2. 𝑀-Type Estimator for Penalized Regression Splines. The
above estimate m̂LS of the penalized least squares regression
splines may greatly suffer from various robustness issues
especially when the data is contaminated with outliers. For
alleviating this effect, a penalized regression estimator can
be straightforwardly constructed by replacing the previous
squared residual loss function with the following 𝑀-type
criterion [27]:

𝑛

∑

𝑖=1

𝜌(𝑦𝑖 − 𝑚 (𝑥𝑖;𝛽))
2
+ 𝜆

𝐾

∑

𝑗=1

𝛽
2

𝑝+𝑗
, (12)

where 𝜌 is even, nondecreasing in [0, +∞) and 𝜌(0) = 0, for
which a common choice is taken of the Huber loss function
with cutoff 𝑐 > 0,

𝜌𝑐 (𝑡) = {

𝑡
2

|𝑡| ≤ 𝑐

2𝑐 |𝑡| − 𝑐
2
|𝑡| > 𝑐.

(13)

Apparently, the above Huber’s function is a parabola in the
vicinity of zero, and it increases linearly at a given level |𝑡| >
𝑐. A default choice of the tuning constant 𝑐 = 1.345 aims
for a 95% asymptotic efficiency with respect to the standard
normal distribution.

Denote the derivative of 𝜌𝑐 as 𝜓𝑐(𝑠) = max[−𝑐,min(𝑐, 𝑠)].
When a set of fitted residuals 𝑟𝑖 = 𝑦𝑖 − 𝑚(𝑥𝑖;𝛽), 𝑖 = 1, . . . , 𝑛
from the penalized spline regression are given, a robust𝑀-
scale estimator [19, 20] can be employed for estimating the
standard deviation 𝜎𝜀 of these residuals as follows:

𝑛

∑

𝑖=1

𝜓𝑐 (
𝑦𝑖 − 𝑚 (𝑥𝑖;𝛽)

𝜎̂𝜀

) = 0. (14)

A common choice for a measure of scale with a high finite
sample breakdown point can be the value of 𝜔 determined by

𝑃 (
󵄨󵄨󵄨󵄨𝑟 − 𝑟0.5

󵄨󵄨󵄨󵄨 < 𝜔) =
1

2
, (15)

where 𝑟0.5 is the population median. Besides, the standard
estimation of 𝜔 usually employs the median absolute devi-
ation (MAD) statistic, which is defined as

MAD = Median {󵄨󵄨󵄨󵄨𝑟1 −𝑀𝑟
󵄨󵄨󵄨󵄨 , . . . ,

󵄨󵄨󵄨󵄨𝑟𝑛 −𝑀𝑟
󵄨󵄨󵄨󵄨} , (16)

where𝑀𝑟 is the usual sample median of the fitted residuals
and MAD is actually the sample median of the 𝑛 values
|𝑟1−𝑀𝑟|, . . . , |𝑟𝑛−𝑀𝑟|, with its finite sample breakdown point
approximately being 0.5 [20]. Suppose the fitted residuals
are randomly sampled from a normal distribution; note that
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Step 0. Input an initial curve estimate m̂(0)
𝑝
, termination tolerance 𝜀, and the maximum iteration

number Itermax. Meanwhile, set 𝑘 = 0 and conduct the following loop iterations.
Step 1. Estimate 𝜎̂𝜀 by using MADN in (17);
Step 2. Produce the empirical pseudo data according to (19);
Step 3. Calculate the penalized least-square estimator m̂(𝑘+1)

𝑝
defined in (20) for the pseudo data,

where the penalty parameter 𝜆 is chosen according to the generalized cross-validation
(GCV) criterion formulated by (11) in the foregoing subsection.

Step 4. If ‖m̂(𝑘+1)
𝑝

− m̂(𝑘)
𝑝
‖ < 𝜀‖m̂(𝑘)

𝑝
‖ or 𝑘 = Itermax, terminate and output the robust

𝑀-type penalized spline estimate m̂𝑀 = m̂(𝑘+1)
𝑝

; else set 𝑘 = 𝑘 + 1 and continue Step 1.

Algorithm 1:𝑀-type iterative algorithm for penalized regression splines.

MAD does not estimate the corresponding standard devia-
tion, 𝜎̂𝜀, but rather estimates𝑍0.75𝜎̂𝜀 (with𝑍0.75 being the 0.75
quantile of the standard normal distribution). To putMAD in
a more familiar context, it typically needs to be rescaled so as
to estimate 𝜎̂𝜀 especially when the residuals are sampled from
a normal distribution. In particular,

MADN = MAD
𝑧0.75

≈ 1.4836MAD. (17)

By utilizing the aforementioned spline basis functions, an
𝑀-type penalized spline estimator using the standardized
residuals can be computed as m̂𝑀 = X𝛽̂

𝑀
, with its regression

coefficients being as follows:

𝛽̂
𝑀
= argmin
𝛽

𝑛

∑

𝑖=1

𝜌𝑐 (
𝑦𝑖 − 𝑚 (𝑥𝑖;𝛽)

𝜎̂𝜀

) + 𝜆𝛽
𝑇
𝐷𝛽. (18)

Due to the nonlinear nature of 𝜌𝑐 and 𝜓𝑐, it is nontrivial to
seek the minimizer of (18) while satisfying (14). Under such
circumstances, an𝑀-type iterative algorithm for calculating
the penalized regression splines is proposed [27] by introduc-
ing the empirical pseudodata

z = m̂𝑝 +
𝜓𝑐 (y − m̂𝑝)

2
, (19)

where m̂𝑝 is the penalized least square estimator correspond-
ing to the above pseudodata

m̂𝑝 = X(X𝑇X + 𝜆𝐷)
−1

X𝑇z. (20)

As proved inTheorem 1 of Lee and Oh’s [27] work, the penal-
ized least square estimator m̂𝑝 converges to m̂𝑀 asymptoti-
cally, which implies an𝑀-type iterative algorithm consisting
of the steps in Algorithm 1.

Regarding the𝑀-type estimator for the penalized regres-
sion splines (see Algorithm 1), the initial curve estimate m̂(0)

𝑝

in Step 0 is suggested [27], choosing the nonrobust penalized
least square regression spline presented by (7).

2.3. 𝑆-Estimation for Penalized Regression Splines. The robust-
ness properties of the aforementioned𝑀-type estimator for

penalized regression splines are not completely satisfactory
since they have low breakdown point [31], which was clarified
by Maronna and Yohai [32] for the general 𝑀-estimators
when considering both the regression and scale, simultane-
ously.

Another more robust and relatively latest approach for
smoothing the noisy data is the 𝑆-estimation for penal-
ized regression splines [29], whose core idea is utilizing a
flexible 𝑆-estimator to replace the traditional least squares
estimator. The coefficient vector of the penalized 𝑆-regression
splines 𝛽̂

𝑆
is defined as follows:

𝛽̂
𝑆
= argmin
𝛽

{𝑛𝜎̂
2

𝜀
(𝛽) + 𝜆𝛽

𝑇
𝐷𝛽} , (21)

in which, for each 𝛽, 𝜎̂2
𝜀
(𝛽) satisfies

1

𝑛

𝑛

∑

𝑖=1

𝜌(
𝑦𝑖 − 𝐹(𝑥𝑖)

𝑇
𝛽

𝜎̂𝜀 (𝛽)
) = 𝐸Φ (𝜌 (𝑍)) , (22)

where Φ is cumulative distribution function of the standard
norm distribution,𝑍 ∼ 𝑁(0, 1), and the loss function is taken
from Tukey’s bisquare family [33]

𝜌𝑑 (𝑢) =

{{

{{

{

3(
𝑢

𝑑
)

2

− 3(
𝑢

𝑑
)

4

+ (
𝑢

𝑑
)

6

|𝑢| ≤ 𝑑

1 |𝑢| > 𝑑.

(23)

It is evidently known from theoretical assumption that each
fitted residual vector should follow a normal distributionwith
mean of zero; that is, r𝑖 ∼ 𝑁(0, 𝜎2𝜀 ), 𝑖 = 1, . . . , 𝑛, however
its median statistic, Median(r), in which r = (𝑟1, . . . , 𝑟𝑛)

𝑇,
may greatly depart from zero to a large extent in the general
practice. Considering this, we ameliorate the estimation of
𝜎̂𝜀(𝛽)byusingMADN in (17)with the addition of the absolute
value of residual median; namely,

𝜎̂𝜀 (𝛽) = MADN +Median (r (𝛽)) . (24)

The penalized 𝑆-estimator for the regression spline model is
computed as m̂𝑆 = X𝛽̂

𝑆
, with its coefficients vector 𝛽̂

𝑆
satisfy-

ing both (21) and (22), simultaneously.The following formula
derivations indicate that such penalized 𝑆-estimator can



Mathematical Problems in Engineering 5

actually be equivalent to a weighted penalized least squares
regression.

Before proceeding with the derivation, it is forewarned
that the symbol 𝛽̂

𝑆
is simplywritten as𝛽 just for clarity. Firstly,

when (21) reaches its minimum, the following equation
should be satisfied:

𝑛𝜎̂𝜀 (𝛽) ∇𝜎̂𝜀 (𝛽) + 𝜆𝐷𝛽 = 0. (25)

On the other hand, taking the derivative of the 𝑀-scale
function in (22) with respect to 𝛽 leads to

𝑛

∑

𝑖=1

𝜌
󸀠
(
𝑟𝑖 (𝛽)

𝜎̂𝜀 (𝛽)
)(

−𝐹(𝑥𝑖)
𝑇
𝜎̂𝜀 (𝛽) − 𝑟𝑖 (𝛽) ∇𝜎̂𝜀(𝛽)

𝑇

𝜎̂2
𝜀
(𝛽)

) = 0,

(26)

inwhich 𝑟𝑖(𝛽) = 𝑦𝑖−𝐹(𝑥𝑖)
𝑇𝛽, 𝑟𝑖(𝛽) = 𝑟𝑖(𝛽)/𝜎̂𝜀(𝛽), andΛ(𝛽) =

diag(𝜌󸀠(𝑟𝑖(𝛽))/𝑟𝑖(𝛽)), 𝑖 = 1, . . . , 𝑛.
Deformation of the above formula produces

∇𝜎̂𝜀 (𝛽) = −
∑
𝑛

𝑖=1
𝜌
󸀠
(𝑟𝑖 (𝛽) /𝜎̂𝜀 (𝛽)) 𝐹 (𝑥𝑖)

∑
𝑛

𝑖=1
𝜌󸀠 (𝑟𝑖 (𝛽) /𝜎̂𝜀 (𝛽)) (𝑟𝑖 (𝛽) /𝜎̂𝜀 (𝛽))

= −(
𝜎̂𝜀 (𝛽)X𝑇Λ (𝛽) r (𝛽)
r(𝛽)𝑇Λ (𝛽) r (𝛽)

) .

(27)

Substituting ∇𝜎̂𝜀(𝛽) of (27) into (25),

−
𝑛𝜎̂𝜀(𝛽)

2

𝑟(𝛽)
𝑇
Λ (𝛽) r (𝛽)

X𝑇Λ (𝛽) r (𝛽) + 𝜆𝐷𝛽 = 0. (28)

Recall that r(𝛽) = y − X𝛽 and import new symbol 𝜏(𝛽) =
𝑛𝜎̂𝜀(𝛽)

2
/r(𝛽)𝑇Λ(𝛽)r(𝛽); we have

−𝜏 (𝛽)X𝑇Λ (𝛽) (y − X𝛽) + 𝜆𝐷𝛽 = 0. (29)

And, thus, a further simple deformation arrives at the coeffi-
cient vector 𝛽̂

𝑆
with an iteration form

𝛽 = (X𝑇Λ (𝛽)X + 𝜆

𝜏 (𝛽)
𝐷)

−1

X𝑇Λ (𝛽) y, (30)

which forms the basis of constructing an iterative algorithm
for penalized 𝑆-regression spline.

The above formula derivations verify that 𝛽̂
𝑆
is actually

the solution to the following weighted penalized least squares
regression problem:

min
𝛽

󵄩󵄩󵄩󵄩󵄩󵄩
Λ(𝛽)
1/2
(y − X𝛽)

󵄩󵄩󵄩󵄩󵄩󵄩

2

+
𝜆

𝜏 (𝛽)
𝛽
𝑇
𝐷𝛽, (31)

And such representation indicates that the GCV criterion in
(11) can be employed straightforwardlywith response variable
ỹ = Λ(𝛽)1/2y, weighted design matrix X̃ = Λ(𝛽)1/2X,

and the penalty term 𝜆/𝜏(𝛽). Meanwhile, due to some
weight elements being zero, the penalty parameter 𝜆 is thus
calculated based on the following RegularizedGCV criterion:

RGCV (𝜆) = 𝑛𝑤

󵄩󵄩󵄩󵄩󵄩󵄩
Λ(𝛽)
1/2
(y − X𝛽)

󵄩󵄩󵄩󵄩󵄩󵄩

2

(𝑛𝑤 − tr (𝐻̃𝜆))
2
, (32)

where 𝐻̃𝜆 = X̃(X̃
𝑇X̃ + (𝜆/𝜏(𝛽))𝐷)

−1

X̃𝑇 = Λ(𝛽)1/2X(X̃𝑇Λ(𝛽)X+
(𝜆/𝜏(𝛽))𝐷)−1X𝑇Λ(𝛽)1/2 and 𝑛𝑤 denotes the number of non-
zero elements in weight matrix Λ(𝛽).

Consequently, based on the foregoing in-depth dis-
cussions, the 𝑆-estimator iterative algorithm for penalized
regression splines can be constructed as in Algorithm 2.

In particular, it should be pointed out that since the
employed loss function 𝜌𝑑 is bounded giving rise to the non-
convexity of 𝜎̂𝜀(𝛽), the objective function in (21) may have
several critical points, each of which only corresponds to one
local minima. Therefore, the convergent critical point of
the iterations derived from the above algorithm completely
depends on the prescribed initial regression coefficients vec-
tor, 𝛽̂
(0)

, in Step 0 of Algorithm 2.
One possible solution to cope with this issue proposed by

Tharmaratnam et al. [29] is based on the random sampling
theory, which can be briefly described as, firstly, creating 𝐽
random subsamples with a proper size, for example, one fifth
of the sample number; namely, 𝑛𝑠 = max(𝑝 + 𝐾 + 1, ⌊𝑛/5⌋),
from the original sample observations. Each subsam-
ple brings about an initial candidate of the coefficient vec-
tor, for instance, assigned by least squares fitting for the
penalized regression splines or the 𝑀-type estimator with
a small amount of additional computation cost, with the
initial regression coefficient vector of the 𝑗th subsample
being denoted by 𝛽̂

(0)

𝑗
, staring from which the final iterative

convergent vector produced through Algorithm 2 is being
written as 𝛽̂

⋆

𝑗
, 𝑗 = 1, . . . , 𝐽. Eventually, the global optimum

is taken among all these 𝐽 convergent vectors to be the one
corresponding to the minimum objective function in (21);
namely,

𝛽̂
⋆

𝑆
= argmin
1≤𝑗≤𝐽

{𝑛𝜎̂
2

𝜀
(𝛽̂
⋆

𝑗
) + 𝜆𝛽̂

⋆𝑇

𝑗
𝐷𝛽̂
⋆

𝑗
} . (33)

Therefore, the robust 𝑆-estimator for penalized regression
splines can be computed as m̂𝑆 = X𝛽̂

⋆

𝑆
.

3. Experimental Performance Evaluation

This section is devoted to the comparative experiments
upon both simulated synthetic data and one real weather
balloon data set for the foregoing explored penalized spline
smoothing methods, including the nonrobust penalized least
square regression spline (LS) presented by (7) and two robust
smoothing approaches, the 𝑀-type estimator [27] and 𝑆-
estimation [29], for penalized regression splines as described
in Algorithms 1 and 2.
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Step 0. Input an initial regression coefficients 𝛽̂
(0)

, the termination tolerance 𝜀, and the maximum
iteration number Itermax. Meanwhile, set 𝑘 = 0 and enter into the following loop iterations.

Step 1. Estimate 𝜎̂𝜀 based on (24), that is

𝜎̂𝜀 (𝛽̂
(𝑘)

) = MADN +Median(r(𝛽̂
(𝑘)

)).

Step 2. Compute the intermediate variables 𝜏(𝛽̂
(𝑘)

) and Λ(𝛽̂
(𝑘)

).

Step 3. Calculate the coefficient vector 𝛽̂
(𝑘+1)

according to (30) as

𝛽̂
(𝑘+1)

= (X𝑇Λ(𝛽̂
(𝑘)

)X + 𝜆

𝜏(𝛽̂
(𝑘)

)

𝐷)

−1

X𝑇Λ(𝛽(𝑘)) y.

Hereinto, the penalty parameter 𝜆 is figured out based on the regularized GCV criterion (32).

Step 4. If ‖𝛽̂
(𝑘+1)

− 𝛽̂
(𝑘)

‖ < 𝜀‖𝛽̂
(𝑘)

‖ or 𝑘 = Itermax, terminate and output the convergent
coefficient vector for the penalized regression spline of 𝑆-estimator 𝛽̂

󳀅

= 𝛽̂
(𝑘+1)

; else
accumulate the counter by setting 𝑘 = 𝑘 + 1 and repeat Step 1.

Algorithm 2: 𝑆-estimator iterative algorithm for penalized regression splines.

3.1. Configuration and Criteria. It should be incidentally
mentioned that the exponential order 𝑝 = 3 for truncated
power basis is always employed for all these three methods,
and the knot locations are selected in accordance with
the recommended choice by Ruppert et al. [14], 𝜅𝑘 =

((𝑘 + 1)/(𝐾 + 2))th sample quantile of the Unique(x), 𝑘 =
1, . . . , 𝐾; together with a simple choice of the knot num-
ber 𝐾 = min(35, (1/4) × Number of Unique(x)), where
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)

𝑇. Besides, the corresponding penalty
parameter 𝜆 is determined according to the generalized
cross-validation (GCV) criterion for the LS fitting and 𝑀-
estimation methods and the regularized GCV criterion for
the 𝑆-estimation method. Meanwhile, the termination toler-
ance 𝜀 = 10−6 and the maximum iteration number of 100 are
assigned for the initial input parameters in Algorithms 1 and
2 and 𝐽 = 5 subsamples are randomly generated for exploring
the ultimate optimum.

Meanwhile, the hardware equipment and software envi-
ronment established for the experiments below are Dell
XPS 8700 Desktop (CPU: Intel Core i7-4770 @ 3.40GHz),
MATAB R2014a installed upon Windows 7 SP1 Ultimate
(64 Bit).

3.2. Synthetic Data. The simulated study is designed the same
as in Lee and Oh [27] with the testing function

𝑦𝑖 = sin (2𝜋(1 − 𝑥𝑖)
2
) + 0.5𝜀𝑖, 𝑖 = 1, . . . , 𝑛. (34)

The designed samples are generated with their horizontal
axes being uniformly extracted from the open interval (0, 1)
and the corresponding error distribution 𝜀 employing nine
possible scenarios with the probability distribution function
(pdf) specified if necessary, including (1) uniform distribu-
tion, 𝑈(−1, 1), (2) standard normal distribution, 𝑁(0, 1), (3)
logistic distribution with its pdf as 𝑒𝑥/(1 + 𝑒𝑥)2, (4) double
exponential distribution with its pdf as ((1/2)𝑒−|𝑥|), (5) con-
taminated normal distribution I, 0.95𝑁(0, 1) + 0.05𝑁(0, 10),

that is the error constituted with 95% from 𝑁(0, 1) and
5% from 𝑁(0, 10), (6) contaminated normal distribution II,
0.9𝑁(0, 1) + 0.1𝑁(0, 10), (7) slash distribution, defined from
two statistically independent random variables following (1)
and (2), that is,𝑁(0, 1)/𝑈(0, 1), (8) Cauchy distribution with
the pdf as 1/𝜋(1 + 𝑥2), whose simulated outliers can be gen-
erated from uniform distribution by inverse transformation
technique [34], and (9) an asymmetric normal mixture dis-
tribution, 0.9𝑁(0, 1) + 0.1𝑁(30, 1). For the sake of reducing
the simulation variability, the sample size is taken as a fixed
value, 𝑛 = 200. It should be mentioned incidentally that the
above (1)∼(8) error scenarios are symmetrically distributed
and provided with the ascending order according to the
heaviness of their tails, and scenario (9) denotes the standard
normal distribution mixed with 10% asymmetric outliers
from𝑁(30, 1).

Figure 1 presents the spline regression curves from the
penalized LS fitting, 𝑀-estimator, and 𝑆-estimator for one
time simulated scattered samples in nine possible scenarios,
each of which with a subfigure panel demonstrating the com-
parative regression results for these three penalized spline
smoothing methods.

For proceeding further quantitative evaluation of the
comparative analysis for these three penalized spline smooth-
ingmethods, the statistical indicator of average squared error
(ASE) is utilized here to qualify the goodness of fitting
between the regression spline 𝑚̂𝑗(𝑥) for the 𝑗th simulation
replicate from each of the above outlier scenarios and the true
simulated function𝑚(𝑥) = sin(2𝜋(1 − 𝑥)2)

ASE𝑗 =
1

𝑛

𝑛

∑

𝑖=1

(𝑚 (𝑥𝑖) − 𝑚̂𝑗(𝑥𝑖))
2

, 𝑗 = 1, . . . , 𝐽, (35)

with the specified replicate number 𝐽 = 103 for each distribu-
tion.

Performances of the penalized spline smoothing meth-
ods are thoroughly evaluated from the aspects of the fitting
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Figure 1: Spline regression curves (with true testing function in black solid line) from the penalized LS fitting (blue dotted),𝑀-estimator
(green dot-dashed), and 𝑆-estimator (red dashed) for the simulated samples (black circle-dot) in 9 possible scenarios.

accuracy, robustness, and execution time. In the following,
Figures 2 and 3 illustrate the box plots of both ASEs and code
running times using (a) penalized LS-estimation, (b) penal-
ized 𝑀-estimation, and (c) penalized 𝑆-estimation for the
spline smoothing methods, as well as their median value
comparisons of these two indicators for the simulated sam-
ples from each of the 9 distribution scenarios.

From the ASE comparisons in Figure 2, it can be found
that the penalized LS-estimation behaves well for the sym-
metric error scenarios with small tail weights, such as the
simple uniform and standard normal distribution. However,
it cannot cope with the complex conditions such as the
three latter error distributions possessing heavy tails, thereby
binging about large ASEs which are specially rescaled to
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Figure 2: Box plots of ASEs using (a) penalized LS-estimation, (b) penalized 𝑀-estimation, (c) penalized 𝑆-estimation, and (d) the
comparison of Median ASE for the simulated samples from each of the 9 distribution scenarios with replicate number 𝐽 = 103.

the additive vertical coordinate on the right so as to be
accommodated with the ASEs results for other error sources
in the same window (refer to panels (a) and (d) in Figure 2).
In comparison, the robust penalized 𝑀-type estimation
presents satisfactory regression fittings for the distributions
with moderate tail weights like (2)∼(5) scenarios, which are
located at the middle in each panel. Meanwhile, the robust 𝑆-
estimator provides the comparatively meritorious smoothing
results especially for the complicated circumstances like slash,
Cauchy, or the asymmetric distributions with heavy tails.

In terms of the robustness, LS-estimator simply does not
have the qualifications to be mentioned from this aspect.
Instead, the 𝑀-estimator demonstrates stable performance
for the designed samples with moderate perturbation error
and the 𝑆-estimator behaves dominantly stable for all kinds
of error source scenarios.

Unfortunately, as for the execution efficiency, the most
time-elapsed one is the 𝑆-estimator, followed by the 𝑀-
estimator, with the least consuming estimator being the LS-
estimator since it has been treated as the initial curve estimate
for the two former approaches. Moreover, although both 𝑆-
estimator and𝑀-estimator are composed of similar iterative

process, the random sampling theory is further involved in
the former model for exploring the ultimate solution for a
nonconvex optimization problem.

3.3. Balloon Data. This section is devoted to the comparative
experiments of the aforementioned penalized spline smooth-
ingmethods upon a set of weather balloon data [35].The data
consist of 4984 observations collected from a balloon at about
30 kilometers altitude, with the outliers caused due to the fact
that the balloon slowly rotates, causing the ropes from which
the measuring instrument is suspended to cut off the direct
radiation from the sun.

As illustrated above, Figure 4 displays these balloon
observational data together with the regression fitting curves
by the penalized LS method, the robust penalized 𝑀-
estimation method, and the robust 𝑆-estimation method.
Besides, it can also be explicitly discovered by contrast that
the non-robust LS regression curve suffers from the dis-
turbance of the outliers, and this phenomenon seems even
more significantly around the position of horizontal axis
being 0.8, while the other two robust splines pass through
approximately the majority of the observations. Meanwhile,
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Figure 3: Box plots of run times using (a) penalized LS-estimation, (b) penalized 𝑀-estimation, (c) penalized 𝑆-estimation, and (d) the
comparison of median run time for the simulated samples from each of the 9 distribution scenarios with replicate number 𝐽 = 103.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Balloon data
LS fitting

M-estimator
S-estimator

Figure 4: Regression fitted curves for the balloon data using penal-
ized spline smoothing models including the penalized LS fitting
(blue dashed), 𝑀-estimator (green dot-dashed), and 𝑆-estimator
(red solid line).

the 𝑆-estimator seems to behave slightly more superior to the
𝑀-estimator since the former accords with the data trend
better especially at the ridge and two terminal nodes.

At the same time, under the platform specified in Sec-
tion 3.1, the algorithm execution times of this weather
balloon data set with 4984 observations are 2.3 s, 35.1 s, and
58.9 s for the penalized LS regression, the penalized𝑀-type
estimator, and the penalized 𝑆-estimator, respectively.

4. Conclusions

This paper conducts a comprehensively comparative analysis
of the current two popular robust penalized spline smoothing
methods, the penalized𝑀-type estimator and the penalized
𝑆-estimation, both of which are reelaborated starting from
their origins, with their derivation process reformulated and
the ultimate algorithms reorganized under a unified frame-
work.

Experiments consist of firstly one simulated synthetic
data set with the outliers in 9 possible scenarios and then a
practical weather balloon data set for the aforementioned
penalized regression spline, whose performances are thor-
oughly evaluated from the aspects of fitting accuracy, robust-
ness, and execution time.

Conclusions from these experiments are that robust
penalized spline smoothing methods can be resistant to the
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influence of outliers compared with the nonrobust penalized
LS spline fitting method. Further, the𝑀-estimator can exert
stable performance only for the observed samples with
moderate perturbation error while the 𝑆-estimator behaves
dominantly well even for the cases with heavy tail weights
or higher percentage of contaminations, but necessary with
more executive time.Therefore, taking both the solving accu-
racy and implementation efficiency of the fitted regression
spline into account,𝑀-type estimator is generally preferred,
whereas if only the fitting credibility is of concern, then the
𝑆-estimator naturally deserves to become the first choice.
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