38 research outputs found

    Co-Optimizing Battery Storage for Energy Arbitrage and Frequency Regulation in Real-Time Markets Using Deep Reinforcement Learning

    Get PDF
    Battery energy storage systems (BESSs) play a critical role in eliminating uncertainties associated with renewable energy generation, to maintain stability and improve flexibility of power networks. In this paper, a BESS is used to provide energy arbitrage (EA) and frequency regulation (FR) services simultaneously to maximize its total revenue within the physical constraints. The EA and FR actions are taken at different timescales. The multitimescale problem is formulated as two nested Markov decision process (MDP) submodels. The problem is a complex decision-making problem with enormous high-dimensional data and uncertainty (e.g., the price of the electricity). Therefore, a novel co-optimization scheme is proposed to handle the multitimescale problem, and also coordinate EA and FR services. A triplet deep deterministic policy gradient with exploration noise decay (TDD-ND) approach is used to obtain the optimal policy at each timescale. Simulations are conducted with real-time electricity prices and regulation signals data from the American PJM regulation market. The simulation results show that the proposed approach performs better than other studied policies in literature

    CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

    Get PDF
    Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    In Vitro Digestion and Storage Stability of β-Carotene-Loaded Nanoemulsion Stabilized by Soy Protein Isolate (SPI)-Citrus Pectin (CP) Complex/Conjugate Prepared with Ultrasound

    No full text
    In this study, we employed the ultrasound-prepared electrostatic complex and covalent conjugate of soy protein isolate (SPI) and citrus pectin (CP) to prepare β-carotene-loaded nanoemulsions. The in vitro digestion and storage stability of nanoemulsions stabilized by different types of emulsifiers were investigated and compared. Nanoemulsions stabilized by ultrasound-treated complex/conjugate showed the highest encapsulation efficiency; during gastric digestion, these nanoemulsions also demonstrated the smallest droplet sizes and the highest absolute values of zeta potential, indicating that both electrostatic complexation/covalent conjugation and ultrasound treatment could significantly improve the stability of the resulting nanoemulsions. In comparison, complexes were more beneficial for the controlled release of β-carotene; however, the conjugate-stabilized nanoemulsion showed an overall higher bioaccessibility. The results were also confirmed by optical micrographs. Furthermore, nanoemulsions stabilized by ultrasound-prepared complexes/conjugates exhibited the highest stability during 14-day storage at 25 °C. The results suggested that ultrasound-prepared SPI–CP complexes and conjugates had great application potential for the delivery of hydrophobic nutrients

    One-Sided Matching with Permission

    Full text link
    Classical one-sided matching assumes participants in the matching market are of a fixed size, each with an initial endowment and can exchange with others. In this paper, we consider a more dynamic and challenging setting where only a few participants are initially in the market, while the others need their invitation/permission to join in. However, the invitation does not always occur naturally and thus requires incentives. If we simply apply Top Trading Cycle, a classic solution for traditional matching, invitees may compete with their inviters in the matching and therefore they are reluctant to invite others. To combat this, we propose a new solution to protect inviters which guarantees that inviting all their friends is a dominant strategy for all participants. This solution novelly utilizes participants' invitations, which is not a simple extension of any existing solutions. We demonstrate its advantages in terms of participants' satisfaction by simulations and compare it with other existing solutions

    Cathodic Stripping Synthesis and Cytotoxity Studies of Glutathione-Capped CdTe Quantum Dots

    No full text
    A cathodic stripping of Te precursor in the presence of Cd2+ and biocompatible glutathione (GSH) was reported for facile synthesis of lowly cytotoxic and highly luminescent CdTe quantum dots (QDs) in aqueous solution. The photoluminescence, electrogenerated chemiluminescence (ECL), toxicity, and cyto-osmosis of the QDs were evaluated to reveal their potential bio-applications. The morphology and composition of as-prepared QDs were investigated by HRTEM and powder XRD spectroscopy, which indicated that the QDs consisted of a CdTe core coated with a CdS shell. The obtained CdTe/CdS core/shell QDs possessed good crystallinity, narrow monodispersity and long-term stability. These QDs showed high fluorescence quantum yields of 49% to 63% over a broad spectral range of 540–650 nm. Efficient and stable ECL of QDs was observed on the anodic potential region upon the electrode potential cycled between 1.5 and −2.0 V versus Ag/AgCl. Furthermore, human liver cancer HepG2 cells were chosen as model cells for toxicity assay of QDs. Effects of the concentration, size, and incubation time of CdTe QDs capped with GSH or mercaptoacetic acid (MAA) on the cell metabolic viability and cyto-osmosis were evaluated. GSH-capped CdTe QDs could infiltrate cytomembrane and karyothecas, and were less cytotoxic than MAA-capped ones under the same experimental conditions. The reported CdTe QDs could be good candidates of fluorescent and ECL probes for biosensing and cell imaging

    Selection and Validation of Appropriate Reference Genes for qRT-PCR Analysis in Isatis indigotica Fort.

    No full text
    Due to its sensitivity and specificity, real-time quantitative PCR (qRT-PCR) is a popular technique for investigating gene expression levels in plants. Based on the Minimum Information for Publication of Real-Time Quantitative PCR Experiments (MIQE) guidelines, it is necessary to select and validate putative appropriate reference genes for qRT-PCR normalization. In the current study, three algorithms, geNorm, NormFinder, and BestKeeper, were applied to assess the expression stability of 10 candidate reference genes across five different tissues and three different abiotic stresses in Isatis indigotica Fort. Additionally, the IiYUC6 gene associated with IAA biosynthesis was applied to validate the candidate reference genes. The analysis results of the geNorm, NormFinder, and BestKeeper algorithms indicated certain differences for the different sample sets and different experiment conditions. Considering all of the algorithms, PP2A-4 and TUB4 were recommended as the most stable reference genes for total and different tissue samples, respectively. Moreover, RPL15 and PP2A-4 were considered to be the most suitable reference genes for abiotic stress treatments. The obtained experimental results might contribute to improved accuracy and credibility for the expression levels of target genes by qRT-PCR normalization in I. indigotica

    Genome wide identification and characterization of fertility associated novel CircRNAs as ceRNA reveal their regulatory roles in sheep fecundity

    No full text
    Abstract Reproductive traits play a vital role in determining the production efficiency of sheep. Maximizing the production is of paramount importance for breeders worldwide due to the growing population. Circular RNAs (circRNAs) act as miRNA sponges by absorbing miRNA activity through miRNA response elements (MREs) and participate in ceRNA regulatory networks (ceRNETs) to regulate mRNA expression. Despite of extensive research on role of circRNAs as miRNA sponges in various species, their specific regulatory roles and mechanism in sheep ovarian tissue are still not well understood. In this study, we performed whole genome sequencing of circRNAs, miRNA and mRNA employing bioinformatic techniques on ovine tissues of two contrasting sheep breeds "Small tail Han (X_LC) and Dolang sheep (D_LC)", which results into identification of 9,878 circRNAs with a total length of 23,522,667 nt and an average length of 2,381.32 nt. Among them, 44 differentially expressed circRNAs (DECs) were identified. Moreover, correlation between miRNA-mRNA and lncRNA-miRNA provided us with to prediction of miRNA binding sites on nine differentially expressed circRNAs and 165 differentially expressed mRNAs using miRanda. miRNA-mRNA and lncRNA-miRNA pairs with negative correlation were selected to determine the ceRNA score along with positively correlated pairs from lncRNA and mRNA network. Integration of ceRNA score and positively correlated pairs exhibit a significant ternary relationship among circRNAs-miRNA-mRNA demonestrated by ceRNA, comprising of 50 regulatory pairs sharring common nodes and predicted potential differentially expressed circRNAs-miRNAs-mRNAs regulatory axis. Based on functional enrichment analysis shortlisted key ceRNA regulatory pairs associated with reproduction including circRNA_3257-novel579_mature-EPHA3, circRNA_8396-novel130_mature-LOC101102473, circRNA_4140- novel34_mature > novel661_mature-KCNK9, and circRNA_8312-novel339_mature-LOC101110545. Furthermore, expression profiling, functional enrichments and qRT-PCR analysis of key target genes infer their implication in reproduction and metabolism. ceRNA target mRNAs evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations following genomic organizations will provide new insights underlying molecular mechanisms of reproduction, and establish a solid foundation for future research. Graphical Abstract Graphical abstract summarizing the scheme of stud

    Genome-Wide Expression Profiling and Networking Reveals an Imperative Role of IMF-Associated Novel CircRNAs as ceRNA in Pigs

    No full text
    Intramuscular fat (IMF) deposition is a biological process that has a strong impact on the nutritional and sensorial properties of meat, with relevant consequences on human health. Pork loins determine the effects of marbling on the sensory attributes and meat quality properties, which differ among various pig breeds. This study explores the crosstalk of non-coding RNAs with mRNAs and analyzes the potential pathogenic role of IMF-associated competing endogenous RNA (ceRNA) in IMF tissues, which offer a framework for the functional validation of key/potential genes. A high-throughput whole-genome transcriptome analysis of IMF tissues from longissimus dorsi muscles of Large White (D_JN) and Laiwu (L_JN) pigs resulted in the identification of 283 differentially expressed circRNAs (DECs), including two key circRNAs (circRNA-23437, circRNA-08840) with potential binding sites for multiple miRNAs regulating the whole network. The potential ceRNA mechanism identified the DEC target miRNAs-mRNAs involved in lipid metabolism, fat deposition, meat quality, and metabolic syndrome via the circRNA-miRNA-mRNA network, concluding that ssc-mir-370 is the most important target miRNA shared by both key circRNAs. TGM2, SLC5A6, ECI1, FASN, PER1, SLC25A34, SOD1, and COL5A3 were identified as hub genes through an intensive protein-protein interaction (PPI) network analysis of target genes acquired from the ceRNA regulatory network. Functional enrichments, pathway examinations, and qRT-PCR analyses infer their implications in fat/cholesterol metabolism, insulin secretion, and fatty acid biosynthesis. Here, circRNAs and miRNA sequencing accompanied by computational techniques were performed to analyze their expressions in IMF tissues from the longissimus dorsi muscles of two pig breeds. Their target gene evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations, and structural advances with high-throughput protein modeling, following genomic organizations, will provide new insights into the underlying molecular mechanisms of adipocyte differentiation and IMF deposition and a much-needed qualitative framework for future research to improve meat quality and its role as a biomarker to treat lipid metabolic syndromes
    corecore