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Abstract: Battery energy storage systems (BESSs) play a critical role in eliminating uncertainties
associated with renewable energy generation, to maintain stability and improve flexibility of power
networks. In this paper, a BESS is used to provide energy arbitrage (EA) and frequency regulation
(FR) services simultaneously to maximize its total revenue within the physical constraints. The EA
and FR actions are taken at different timescales. The multitimescale problem is formulated as two
nested Markov decision process (MDP) submodels. The problem is a complex decision-making
problem with enormous high-dimensional data and uncertainty (e.g., the price of the electricity).
Therefore, a novel co-optimization scheme is proposed to handle the multitimescale problem, and
also coordinate EA and FR services. A triplet deep deterministic policy gradient with exploration
noise decay (TDD–ND) approach is used to obtain the optimal policy at each timescale. Simulations
are conducted with real-time electricity prices and regulation signals data from the American PJM
regulation market. The simulation results show that the proposed approach performs better than
other studied policies in literature.

Keywords: battery energy storage; energy arbitrage; frequency regulation; real-time market; deep
reinforcement learning

1. Introduction

With wider integration of renewable resources, energy storage has become a significant
technology to help eliminate uncertainties associated with renewable energy generation, in
order to maintain stability and improve flexibility of power networks. Among different
kinds of energy storage technologies, battery energy storage systems (BESSs) have played
an irreplaceable role in energy storage, grid synchronization, and other operation-assistance
services [1,2] due to the following advantages: (1) BESSs can be flexibly configured depend-
ing on the power and energy requirements of system applications [3]; (2) BESSs have an
instantaneous response nature [4,5]; (3) BESSs are not limited by external conditions such
as geographical resources. Various research has been carried out related to battery energy
storage systems planning and design for different applications. Optimized planning was
proposed for a battery energy storage system considering battery degradation to reduce
the operational costs of the nanogrid and microgrid [6]. In [7], the authors identified the
optimal conditions for wireless charging of electric vehicles when they were in motion to
reduce energy consumption. A model was presented for a residential energy management
system to dispatch battery energy storage in a market-based setting [8]. A privacy-aware
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framework was presented for utility-driven demand-side management with a realistic en-
ergy storage system model [9]. However, the economic viability of using BESSs to provide
various services with a large scale is questionable due to their high investment costs [10].

One of the most discussed revenue sources for BESSs is to provide energy arbitrage
(EA) services in a real-time electricity market by deliberately charging at low prices and
discharging at higher prices to gain profit [11,12]. EA using BESSs was studied in [13],
where the electricity price was assumed to be known before making storage decisions.
More recent research took electricity price uncertainty into consideration, and thus many
forecast methods were proposed to improve the quality of electricity price prediction, and
a reinforcement learning method was proposed to maximize the profit of EA based on
historical prices [14]. A stochastic dynamic programming method was used to optimize
the BESS based on the forecast electricity price [15]. Neural networks were used to address
the price prediction uncertainty by introducing a scenario-based optimal control frame-
work [16]. Different models were presented in [17] to process the various price signals to
optimize the price forecast.

In order to further increase the revenue of BESSs, some research work has considered a
battery to provide EA and frequency regulation (FR) services simultaneously [18], since FR
is a significant income source for energy storage [19–23]. For FR, BESSs are used to regulate
the frequency of the power grid by charging or discharging based on the regulation signals
sent by the power grid operator [5,19,24,25]. A comprehensive evaluation for stacked rev-
enue by using the grid-connected BESS was introduced to provide EA and FR services [26].
A linear programming method was used to maximize the potential revenue of electrical en-
ergy storage from participation in EA and FR in the day-ahead market [27]. Co-optimizing
EA and FR services simultaneously is considered a multitimescale problem, and a dynamic
programming approach was proposed to solve the co-optimization problem [19,20]. These
two existing works on co-optimizing EA and FR services assumed that the electricity prices,
regulation signals, or their distributions were known in advance. However, the distri-
butions or the values are hard to attain in the real-time market. Furthermore, these two
works did not consider the degradation cost of the BESS, a key factor in energy operational
planning, without which there might be aggressive charging or discharging of the BESS [4].

Deep reinforcement learning (DRL), combined with deep neural networks (DNNs)
and reinforcement learning (RL) techniques, can be powerful tools for addressing BESS-
related decision-making problems using the trial-and-error mechanism [28,29]. Compared
to model-based methods, such as MILP methods, DRL approaches have the following
advantages: the ability to learn from historical data, to be self-adaptable, and to learn a
good control policy even under a very complex environment [12]. A novel continuous
DRL algorithm was used for energy management of the hybrid electric vehicles [30]. An
expert-assistance deep deterministic policy gradient (DDPG) strategy was introduced to
minimize the energy consumption and optimize the power allocation of the hybrid electric
buses [31]. A multiphysics-constrained fast-charging strategy was proposed for lithium-ion
batteries in [32] based on an environmental perceptive DDPG. However, DDPG is not
effective in avoiding overestimation in the actor–critic setting [33,34].

To address the above issues, a novel co-optimization scheme considering the degra-
dation of the battery cell in the BESS is proposed for the multitimescale problem of co-
optimizing EA and FR services. A novel deep reinforcement learning (DRL) approach, a
triplet deep deterministic policy gradient with exploration noise decay (TDD–ND), is pro-
posed to handle the uncertainty of the real-time electricity prices and frequency regulation
signals in the multitimescale co-optimization problem due to the following reasons: (1)
TDD–ND does not rely on the knowledge of probability distributions; (2) TDD–ND can
be used to solve the problem with continuous action space directly by using deterministic
policy in an actor–critic algorithm [34–36]; (3) The TDD–ND algorithm takes the weighted
action value of triplet critics, which overcomes estimation bias in the deep deterministic
policy gradient (DDPG) algorithm and the twin delayed deep deterministic policy gradient
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(TD3) algorithm [34]; (4) The TDD–ND algorithm adopts the exploration ND policy, which
improves the exploration at the beginning of the training compared to DDPG and TD3.

The main contributions of this paper are as follows:

1. A novel co-optimization scheme is proposed to handle the multitimescale problem.
The BESS decides an optimal EA action every five minutes to maximize its revenue
due to the total amount of energy change, and every two seconds the BESS decides an
optimal FR action to maximize the total reward including the revenue due to energy
change and FR settlement reward. Based on the FR action, the EA action has to be
adjusted based on the power constraints of the BESS to maximize the total revenue of
the day on the two-second level.

2. The TDD–ND algorithm is proposed to solve the co-optimization problem. To the best
of our knowledge, the TDD algorithm [34] is for the first time used for energy storage.
Our proposed method combines the TDD algorithm with ND policy to improve the
exploration during the training, and thus to achieve the higher total revenue.

3. Real-time data are used to evaluate the performance of the proposed TDD–ND co-
optimization approach. Simulation results show that our proposed DRL approach
with the co-optimization scheme performs better than studied policies.

The rest of this paper is organized as follows. Section 2 explains the Pennsylvania New
Jersey Maryland (PJM)’s frequency regulation market. Section 3 presents the nested system
model used to formulate the co-optimizing problem. Our proposed TDD–ND approach is
described in Section 4. The simulation results are discussed in Section 5. The conclusion is
made in Section 6.

2. PJM Frequency Regulation Market

In the PJM frequency regulation market, generators and other devices (e.g., energy
storage) can provide grid ancillary services in exchange for regulation credits [37]. PJM
sends the regulation (RegD) signal to the resources wishing to provide regulation ser-
vices every two seconds. Afterwards, PJM tracks the response from each resource and
computes a performance score for each resource every two seconds based on the RegD
signal and regulation response. For every five minutes, the market also calculates the
average performance score within the five-minute period. The performance score is a
weighted sum of correlation, delay, and precision [38,39]. A BESS typically has the nature
of the instantaneous response and hence the scores of correlation and delay are close to 1.
Therefore, the average performance score SC of a BESS within a five-minute period can be
calculated based on the precision score as follows [19]:

SC =
∑150∆t

t=0 SCt

150
, (1)

SCt = |1−
∣∣∣λF

t + rdt

∣∣∣/ar|, (2)

where λF
t , rdt, ar are denoted as the regulation response power taken by BESS response

to the RegD signal at time t, the RegD signal at time t, and the maximum power capacity
assigned for FR, respectively. ∆t is set to two seconds because the RegD signal rdt is sent
every two seconds. SCt denotes the two-second performance score. When the BESS is 100%
following the RegD signal,

∣∣λF
t + rdt

∣∣ = 0 and SCt = 1.
Every five minutes, the PJM market determines the eligibility of the resource for

regulation based on its average performance score SC, and calculates the amount of the
regulation credit settlement received by the eligible resource. If the average performance
score is less than 40%, the resource will lose its regulation qualification and regulation
credits during that time period [37]. The five-minute regulation credit settlement RC can
be calculated as follows [37]:
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RC =

{
SC · ar · PC, SC ≥ 0.4,
0, SC < 0.4,

(3)

where PC, in $/MW·5min, is the five-minute regulation clearance price for 1 MW regulation
capacity.

3. Nested System Model and Problem Formulation

The system model, illustrated in Figure 1, consists of two main parts, i.e., the power
grid and the BESS including a battery and an energy management system (EMS). The
BESS participates in the energy and regulation market. The power grid sends the real-time
electricity locational marginal price (LMP), FR signal, and FR market clearance price to the
EMS in the BESS. The EMS then generates the operation signal to the battery to take action.
At the same time, the battery sends feedback with its real-time status to the EMS. Based
on the real-time status of the battery and the information from the power grid, the EMS
generates a new operation signal to the battery.

EMSBattery

FR EA
FR Signal,

Clearance 

Price

LMP

Operation Signal

Battery Status

Power Flow

Information 

Flow

BESS

Figure 1. The configuration of the system model.

The BESS co-optimizes EA and FR services to maximize its total reward within a one-
day time horizon in a real-time PJM market: EA acts every five minutes, and FR responds
every two seconds [19]. Due to the nature of the problem, the timescale is divided into
two dimensions: a large timescale with five-minute intervals and a small timescale with
two-second intervals, where two-second intervals are nested in the five-minute timescales.
The two optimization problems are formulated as two nested MDP submodels in the two
following subsections, respectively.

3.1. The Five-Minute MDP Submodel Formulation

The one-day horizon of five-minute submodel T A, decomposed into 288 five-minute
increments (i.e., ∆T = 5 min) illustrated in Figure 2, is denoted as
T A = {0, ∆T, 2∆T, 3∆T, . . . 287∆T}. The BESS takes a charging or discharging action
every five minutes based on its current state to maximize the cumulative reward within
the one-day horizon. The state, action, and reward are defined as follows.
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Figure 2. The nested timescales in a day.

3.1.1. State

The state of the BESS at time T can be defined as SA
T =

(
ET , PA

T
)
, where ET is the BESS

energy level, and PA
T is the real-time electricity locational marginal price (LMP) at time T.

3.1.2. Action

The action in the five-minute submodel, denoted as λT , is the total amount of power
change due to EA and FR at time T within the five-minute interval. λT > 0 represents
that the BESS is charging, while λT < 0 implies that the BESS is discharging. The optimal
action at time T is denoted as λ∗T . The action space should not exceed the maximum power
capacity of BESS B:

|λT | ≤ B. (4)

The total amount of energy stored in the BESS at time T should be within its maximum
energy capacity Emax:

0 ≤ ET + λT · ∆T ≤ Emax. (5)

After taking action λT , state SA
T is converted to state SA

T+∆T at time T + ∆T. The
real-time price PA

T is updated to PA
T+∆T , and the energy level ET evolves to ET+∆T , which

can be calculated as follows:

ET+∆T =

{
ET + ∆T · λT · ηc, λT ≥ 0,
ET + ∆T · λT/ηd, λT < 0,

(6)

where ηc and ηd denote the charging and discharging efficiency, respectively.

3.1.3. Degradation Cost and Reward

The degradation cost of the BESS is a key factor in energy operational planning [4] as
the battery cells degrade for repeated charge/discharge cycles. The degradation cost of the
BESS can be calculated as follows [4]:

fT(b) = cb|λT | · ∆T, (7)

where cb is the degradation cost coefficient, and can be calculated as follows [4]:

cb =
Pcell

2N · (SOCmax − SOCmin)
, (8)

where Pcell is the price of the battery cell in the BESS and N is the number of cycles that the
BESS could be operated within the state of charge (SoC) constraint [SOCmin, SOCmax].

After taking the action, the BESS will receive a reward. In order to avoid conservative
actions caused by the negative reward in the learning process, an average electricity price
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P̄A is introduced in the reward RA
T
(
SA

T , λT
)

for performing λT action in state SA
T based on

the basic principle of EA [14] as follows:

RA
T

(
SA

T , λT

)
=

(
P̄A − PA

T

)
· λT · ∆T − fT(b). (9)

3.2. The Two-Second MDP Submodel Formulation

The BESS needs to respond to the updated RegD signal every two seconds. Because
two-second intervals are nested in the five-minute horizon, the time horizon of one day
within every two-second increment is denoted as TF = {0, ∆t, 2∆t, 3∆t, . . . (150 · 288−
1)∆t}, where ∆t = 2s, shown in Figure 2. The BESS takes a charging or discharging action
every two seconds based on its current state to maximize the cumulative reward within
the one-day horizon. The state, action, and reward are defined as follows.

3.2.1. State

The state at time t is denoted as SF
t = (Et, rdt), where Et is the energy level of the BESS

and rdt is the received RegD signal at that time.

3.2.2. Action

The action is the regulation response power, denoted as λF
t at time t, which is con-

strained by Equation (4). The action space also should not go beyond the maximum power
capacity of BESS B. After performing an action λF

t at time t, state SF
t will transfer to state

SF
t+∆t at time t + ∆t, and the energy level Et will be updated to Et+∆t based on λt denoted

as the total amount of power change at time t due to EA and FR:

Et+∆t =

{
Et + ∆t · λt · ηc, λt ≥ 0,
Et + ∆t · λt/ηd, λt < 0.

(10)

3.2.3. Reward

Based on the PJM market regulation policy, the reward Rt
(
SF

t , λF
t
)

by performing
action λF

t at state SF
t can be calculated as

Rt

(
SF

t , λF
t

)
= RA

t + RF
t − ft(b), (11)

where ft(b) = cb|λt| · ∆t according to Equation (7) and RA
t is the reward due to the total

amount of energy change caused by both EA and FR within the two-second interval:

RA
t =

(
P̄A − PA

T

)
· λt · ∆t. (12)

Instead of calculating the FR settlement at the end of every five minutes, in the two-
second submodel, we need to evaluate the FR reward every two seconds once choosing
an action λt. Based on Equation (3), RF

t is the equivalent real-time regulation settlement
reward within the two-second interval:

RF
t =

{
SCt · B ·

(
PC/150

)
, SCt ≥ 0.4,

0, SCt < 0.4,
(13)

assuming that the maximum power capacity ar assigned for FR is the power capacity of
the BESS B.

3.3. Proposed Co-Optimization Scheme

Solving the co-optimizing problem for EA and FR is to find the optimal action se-
lection policy for the BESS to obtain the maximum expected reward within a day. A
co-optimization scheme is proposed to handle the multitimescale problem and coordinate
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the EA and FR services, which is illustrated in Figure 3. Once λF
t is derived, λt can be

calculated as follows:

λt =


B + λF

t , λ∗T − λF
t > B,

λ∗T ,
∣∣λ∗T − λF

t
∣∣ ≤ B,

−B + λF
t , λ∗T − λF

t < −B,
(14)

where λt is not always equal to λ∗T , due to the power constraint (Equation (4)) of the BESS.
The first case shows that when the optimal action for FR λF

t is discharging (i.e., λF
t < 0)

and the best action for EA is charging, the action for EA will be charging with the highest
power capacity B. In this case, the charging value of λ∗T was set too high, and λt is less than
λ∗T . For the second case, the λt is set to λ∗T . For the third case, when the optimal action for
FR λF

t is charging and the best action for EA is discharging, the action for EA is discharging
with the highest power capacity −B. In this case, the discharging value of λ∗T was set too
low, and λt is greater than λ∗T .
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Figure 3. The TDD–ND approach for the proposed co-optimization scheme.

4. Proposed Triplet Deep Deterministic Policy Gradient with Exploration Noise
Decay Approach

A novel DRL approach, combining TDD [34] and ND, is proposed to address the
co-optimization problem. TDD–ND is a model-free, off-policy actor–critic algorithm, in
which the triplet critics are used to limit estimation bias, and the exploration ND policy is
used to improve the exploration in the algorithm.

4.1. Triplet Deep Deterministic Policy Gradient Algorithm

The TDD algorithm [34] is an off-line RL algorithm which can be applied to solve the
optimization problem with continuous state space as well as continuous actions [35,36].
TDD includes a single actor network (i.e., a deterministic policy network) πϕ and its actor
target network πϕ′ . In addition, TDD adopts three critic networks Qθ1 , Qθ2 , and Qθ3 for
Q-value estimation. Qθ′1

, Qθ′2
and Qθ′3

represent three target networks, corresponding to
critic networks Qθ1 , Qθ2 , and Qθ3 , respectively. The target value yt can be updated using
the weighted minimum Q-value of target Q-networks Qθ′1

and Qθ′2
, combined with the

weighted value of Qθ′3
as follows [34]:

yt = rt + γ

[
β min

j∈{1,2}
Qθ′j

(st+1, ãt+1) + (1− β)Qθ′3
(st+1, ãt+1)

]
, (15)
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where β ∈ (0, 1) is the weight of the pair of critics, γ ∈ [0, 1] is a discount factor, and ãt+1 is
the clipped target action, calculated as follows:

ãt+1 ← πϕ′(st+1) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c), (16)

where ϵ is the clipped Gaussian noise with standard deviation of σ̃, and c is the edge value.
The parameters of the critic networks will be updated by minimizing the following loss:

L(θ) = E(st ,at ,rt ,st+1)∼R

[
(Qθ(st, at)− yt)

2
]
, (17)

whereR is a replay buffer to store and relay experience transactions (st, at, rt, st+1) includ-
ing states, actions, rewards, and next states. The deterministic policy network in actor is
updated using sampled policy gradient which is shown as follows:

∇ϕ J(ϕ) = N−1 ∑∇aQθ1(st, at)
∣∣∣
a=πϕ(st)

∇ϕπϕ(st), (18)

4.2. Proposed TDD–ND Co-Optimization Approach

The ND policy is combined with the TDD algorithm to address the co-optimization
problem. For the ND policy, the standard deviation of the exploration noise ϵ is set to the
maximum value σmax at the beginning of the training, gradually reduced to the minimum
value σmin with a decay of σdecay with the increase of the number of the training episodes,
and kept at the minimum value σmin for the rest of the training. A TDD–ND algorithm for
five-minute submodel optimization is presented in Algorithm 1.

Algorithm 1: The TDD–ND training process for five-minute submodel optimiza-
tion

Initialize the actor network πϕ, the actor target network πϕ′ ← πϕ, the size R of
replay bufferR, and the mini-batch size m.

Initialize the three critic networks Qθ1 , Qθ2 and Qθ3 , and three critic target
networks Qθ′1

← Qθ1 , Qθ′2
← Qθ2 and Qθ′3

← Qθ3 .

1: for episode i← 0 to I do
2: for t ∈ T A do
3: Based on the state of the BESS SA

T including ET and PA
T , choose action λT ,

observe reward RA
T and next state of the BESS SA

T+1.
4: Store transition

(
SA

T , λT , RA
T , SA

T+1
)

inR.

5: Sample a batch of transitions
(

SA
j , λj, RA

j , SA
j+1

)
fromR.

6: From the next state of the BESS SA
T+1, the actor target plays the next

charging or discharging action of the BESS λT+1 via Equation (16).
7: Select Gaussian noise ϵ ∼ N (0, σ) to this next action λT+1. Decrease σ

from σmax to σmin with the decay of σdecay as the increasing of the episode.
8: Calculate the estimated target value via Equation (15).
9: Update parameters of the three critic networks by minimizing the loss

defined by Equation (17).
10: Update the weights of the critic target networks by:

θ′i ← τθi + (1− τ)θ′i, i = 1, 2, 3 every 2 iterations, where τ ≪ 1 is the target
update parameter.

11: Update the actor network by performing gradient every 2 iterations based
on Equation (18).

12: Update the weights of the actor target networks by:
ϕ′ ← τϕ + (1− τ)ϕ′ every 2 iterations.

13: end for
14: end for
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The flow chart of the proposed TDD–ND co-optimization approach is illustrated in
Figure 3. The TDD–ND algorithm is used to train the neural networks for five-minute
submodel optimization. The best actions of the five-minute submodel λ∗T are then input
into the two-second submodel environment. The TDD–ND algorithm is then used to train
neural networks for two-second submodel optimization. For each training iteration, after
action λF

t is chosen, λt is calculated based on Equation (14), and the reward Rt(SF
t , λF

t ) will
be calculated using Equation (11) to maximize the accumulated reward within the one-day
horizon. After each time step, a mini-batch of m transitions is sampled uniformly from a
replay bufferR.

5. Experimental Results

The performance of the proposed co-optimization approach is evaluated in a real-
world scenario. The values of the parameters used in the simulations are listed in Table 1.
Some of the parameters are varied in the simulation and will be noted accordingly. The
parameter settings for the TDD–ND algorithm are listed in Table 2.

Table 1. The value of the parameters used in the simulation.

Parameters Value

PA
T

PJM historical real-time LMP from 00:00:00 AM
to 11:55:00 PM, 30 July 2021 [40]

PC PJM historical real-time clearance price for FR from 00:00:00 AM to
11:55:00 PM, 30 July 2021 [40]

rdt
Historical real-time RegD signal from 00:00:00 AM to

11:59:58 PM, 30 July 2021 [41]
Emax 5 MWh
B, ar 1 MW
Pcell 8× 104 $/MWh
Cb 4/MWh

Table 2. TDD–ND parameter settings.

Parameters Value

αactor 8× 10−4

αcritic 8× 10−5

γ 0.99
σmax 1
σmin 0.01

σdecay 3× 10−3

R 1× 106

m 1× 100

5.1. Performance Evaluation of the Proposed TDD–ND Algorithm

Based on the principle of EA, the BESS charges at low electricity prices and discharges
at high electricity prices. The average price works as a simple indicator to determine
whether the price PA

T is low or high compared to the historical values. The operations of
the BESS in a day are illustrated in Figure 4. The figure shows that when the PA

T is lower
than the average price, the BESS actions are mainly larger than 0, which means the BESS is
charging. However, when the PA

T is higher than the average price, the BESS operations are
discharging to gain profits. The figure matches well with the principle of EA.
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Figure 4. The BESS operation in a one-day period after five-minute submodel optimization.

The performance of the TDD–ND algorithm for co-optimizing EA and FR is studied
by comparing it with another widely-used DRL algorithm, the deep Q-learning (DQL)
algorithm. TDD–ND and DQL algorithms were used to train the five-minute and two-
second submodels for 500 times (500 episodes). During the training using TDD–ND, the
total revenue of a day was validated after every 10 episodes without adding exploration
noise ϵ to see whether the results were close to the training results. The learning curves
of the TDD–ND algorithm and the DQL algorithm are illustrated in Figures 5 and 6,
respectively. These two figures show that the TDD–ND algorithm has a much better
performance than the DQL algorithm in terms of the average performance score and
the total reward. The reason is that the TDD–ND algorithm can choose more accurate
continuous actions rather than using discretized actions in DQL, and can thus obtain a
higher average performance score and total reward.
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Figure 5. The learning curve of the average performance score of the day trained by TDD–ND
and DQL.
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Figure 6. The learning curves of TDD–ND and DQL of the total revenue within a day.

The impact of different levels of power capacity B and energy capacity Emax on
the performance of the TDD–ND algorithm and the DQL algorithm are studied. After
training, the TDD–ND test results are slightly higher than their training values without
the exploration noise. Figure 7 shows that the proposed TDD–ND algorithm always
performs better than the DQL algorithm. The reason is that the DQL algorithm chooses
discretized actions rather than continuous actions to take, and thus negatively impacts the
total revenue. The figure also shows that the total revenue using both algorithms increases
with power capacity B in the similar trend. For both algorithms, the total revenue increases
sharply with B when B is between 0.5 and 1.0. The reason is that when B is 0.5, the SCt is
smaller than 0.4 in most time slots, and thus the regulation settlement reward RF

t becomes
0. When B increases to 1, the SCt is greater than 0.4 in many more time slots. Therefore, the
total revenue is significantly increased. Between B = 1 and B = 2.5, the improvement in
total revenue approximately follows the increase of B, since RF

t is the dominant factor in
the total revenue, and is a linear function of B.

How energy capacity Emax impacts the total revenue using the proposed TDD–ND
algorithm and the DQL algorithm is shown in Figure 8. The figure shows that the TDD–ND
algorithm generates more total revenue than the DQL algorithm under each of the Emax

settings. Compared to the impact of power capacity B, the increase of energy capacity Emax

only makes a slight change to the total revenue. For both algorithms, the total revenue
rises slowly with the increase of Emax between Emax = 2.5 and 12.5, as the energy capacity
increasing only improves RA

t but RF
t dominates the total revenue in Equation (11) when

B = 1 MW. Compared to the TDD–ND algorithm, the DQL algorithm has a slightly higher
improvement rate of the total reward with the increase of Emax, since higher Emax allows the
DQL algorithm to choose better discretized actions for EA, and thus a higher improvement
rate of RA

t compared to the TDD–ND algorithm with continuous actions.
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Figure 7. The total revenue of the day with different levels of power capacity B.
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Figure 8. The total revenue of the day with different levels of energy capacity Emax.

5.2. Performance Comparison of Various Schemes

To demonstrate the effectiveness of our proposed TDD–ND co-optimization scheme,
the following methods are compared: (1) Pure-EA scheme, in which the BESS only provides
the EA service; (2) Pure-FR scheme, in which the BESS only provides the FR service;
(3) Rule-based co-optimization scheme, in which the BESS provides the EA and FR services.
The rule is as follows: The action λt is set to λ∗T to maximize the reward due to the total
amount of energy change caused by both EA and FR; (4) TDD–ND co-optimization scheme
is our proposed TDD–ND algorithm and co-optimization scheme.

The total revenue using each scheme with different settings of B and Emax is illustrated
in Figures 9 and 10, respectively. Figure 9 shows that the TDD–ND co-optimization scheme
generates much more total revenue than the other three schemes at every setting of B, as
the TDD–ND co-optimization scheme tries to maximize the total accumulated reward. The
total revenue using the pure-EA scheme is very small, since FR is much more profitable
than EA. For the TDD–ND scheme, the rule-based scheme and the pure-FR scheme, the
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regulation settlement reward RF
t increases with B, and thus the total revenue increases

with B. For the pure-EA scheme, the higher B allows the BESS to charge more when PA
T

is low and discharge more when PA
T is high. The increasing rates of the total revenue

using the TDD–ND co-optimization scheme and the rule-based co-optimization scheme
from B = 0.5 to B = 1 are higher than those from B = 1 to B = 2.5. The reason is that when
B = 0.5, the performance score is smaller than 0.4 in most time slots, and thus the regulation
settlement reward becomes 0. Therefore, the total revenue of the rule-based co-optimization
scheme is close to that of the pure-FR scheme. When B increases to 1, the performance
score is greater than 0.4 in many more time slots, and with the coordination of EA, the total
revenue is significantly increased. When B is between 1 and 1.5, the total revenue of the
pure-FR scheme is much lower than that of the rule-based co-optimization scheme and that
of the TDD–ND cop-optimization scheme. The reason is that the pure-FR scheme cannot
follow rdt signals closely due to the limitations of the energy capacity, while the rule-based
scheme can coordinate the energy capacity for EA and FR. When B reaches 2 or higher,
the rule-based scheme has similar total revenue to the pure-FR scheme, as the setting of B
allows the rule-based scheme to follow rdt signal closely.
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Figure 9. The comparison of the total revenues between using our proposed TDD–ND co-
optimization scheme, rule-based co-optimization scheme, pure-FR scheme, and pure-EA scheme
under different levels of power capacity B.

The total revenue of each of the four schemes under different settings of energy
capacities Emax is presented in Figure 10. The total revenue of the proposed TDD–ND
co-optimization scheme is much higher than those of the other three schemes. FR is much
more profitable than EA under all of the Emax settings. The total revenue of the TDD–ND
scheme and the rule-based scheme increases slightly with Emax, because the increase of
Emax only improves the value of RA

t , which is a small portion of the total revenue Rt. For
the pure-EA scheme, the total revenue increases with energy capacity Emax, as higher
energy capacity allows the BESS to charge more when PA

T is low and discharge more when
PA

T is high.
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Figure 10. The comparison of the revenues between following the proposed TDD–ND co-
optimization, rule-based co-optimization, and pure-FR and pure-EA schemes under different settings
of energy capacity Emax.

6. Conclusions

A battery energy storage system (BESS) providing both energy arbitrage (EA) and
frequency regulation (FR) services simultaneously to maximize its total revenue within a
day was considered. The BESS takes an EA action every five minutes and an FR action
every two seconds. The multitimescale co-optimization problem was formulated as two
nested Markov decision process (MDP) submodels. A novel co-optimization scheme was
proposed to handle the multitimescale problem and to coordinate the EA and FR services
to maximize the total revenue. The novel deep reinforcement learning (DRL) algorithm,
triplet deep deterministic policy gradient with exploration noise decay (TDD–ND), was
proposed to determine the best actions to take to maximize the accumulated reward within
the one-day horizon. The proposed TDD–ND algorithm achieved 22.8% to 32.9% higher
total revenue than the deep Q-learning (DQL) algorithm under various power capacity
settings of the BESS when its energy capacity was 5 MWh, and achieved 16.7% to 26.6%
higher total revenue under various energy capacity settings when the power capacity was
1 MW. Additionally, our proposed TDD–ND co-optimization scheme achieved 37.7% to
148.8%, 41.8% to 156.3%, and 3507.8% to 15,583.2% higher total revenues compared to
the rule-based co-optimization scheme, the pure-FR scheme, and the pure-EA scheme,
respectively, under various power capacity settings when the energy capacity of the BESS
was 5 MWh. When the power capacity was set to 1 MW, the proposed TDD–ND co-
optimization scheme achieved total revenues 49.6% to 56.2%, 51.0% to 198.4%, and 7156.2%
to 12,777.0% higher than the rule-based co-optimization scheme, the pure-FR scheme, and
the pure-EA scheme, respectively, under the various energy capacity settings. In the future,
investigation can be carried out on the use of the co-optimization methods in multivector
energy systems considering different timescales.
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Nomenclature

ar The maximum regulation capacity in MW assigned by PJM
B The maximum power capacity of the BESS in MW
cb The linearized battery degradation cost co-efficient
ET Energy level of the BESS in MWh at time T in five-minute submodel
Et Energy level of the BESS in MWh at time t in two-second submodel
Emax The maximum energy capacity of the BESS in MWh
f (b) The degradation cost
m The mini-batch size
N The number of cycles that the BESS
PA

T The real-time electricity price at time T
P̄A The average value of electricity prices in the past day
Pcell The price of the battery cell in the BESS

RegD
Dynamic signal for fast regulation, which is a measure of the imbalance between
sources and uses of power in MW in the grid

rdt
The regulation signal (RegD) sent by PJM at time t to the BESS to provide
regulation service

RC The five-minute regulation settlement
RA

T The reward for performing an action λT state SA
T in five-minute submodel

Rt The reward for performing action λF
t at state SF

t in two-second submodel
RF

t The real-time regulation settlement reward within the two-second interval

SC
Average performance score within a five-minute period indicating the
performance of FR

SCt The two-second performance score at time t
SA

T The state of five-minute submodel at time T
SF

t The state of two-second submodel at time t
T The time indicator in five-minute submodel
t The time indicator in two-second submodel
T A The one-day horizon of five-minute submodel
TF The one-day horizon of two-second submodel
∆T The five-minute time interval
∆t The two-second time interval

λT
The action of the total amount of power change in MW due to EA and FR
at time T in five-minute submodel

λF
t

The action in MW of BESS response to the RegD signal at time t in two-second
submodel

λ∗T The optimal action of five-minute submodel at time T

λt
The total amount of power change at time t due to EA and FR in two-second
submodel

ηc The charging efficiency of the BESS
ηd The discharging efficiency of the BESS,
αactor learning rate for actor
αcritic learning rate for critic
σmax The maximum standard deviation value in the exploration noise
σmin The minimum standard deviation value in the exploration noise
σdecay The decay of standard deviation value in the exploration noise decay policy
γ The discount factor for future rewards
R Replay buffer
R The size of replay buffer
ϵ Clipped Gaussian noise
πϕ The actor network in TDD–ND
πϕ′ The actor target network in TDD–ND
Qθ Critic networks in TDD–ND
Qθ′ Target networks in TDD–ND
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