17,194 research outputs found

    The effect of baryonic streaming motions on the formation of the first supermassive black holes

    Full text link
    Observations of quasars at redshifts z > 6 reveal that 10^9 Msol supermassive black holes (SMBHs) had already formed when the Universe was < 0.9 Gyr old. One hypothesis for the origins of these SMBHs is that they grew from the remnants of the first generation of massive stars, which formed in low-mass (~ 10^5 to 10^6 Msol) dark matter minihaloes at z > 20. This is the regime where baryonic streaming motions--the relative velocities of baryons with respect to dark matter in the early Universe--most strongly inhibit star formation by suppressing gas infall and cooling. We investigate the impact of this effect on the growth of the first SMBHs using a suite of high-fidelity, ellipsoidal-collapse Monte Carlo merger-tree simulations. We find that the suppression of seed BH formation by the streaming motions significantly reduces the number density of the most massive BHs at z > 15, but the residual effect at lower redshifts is essentially negligible. The streaming motions can reduce by a factor of few the number density of the most luminous quasars at z ~ 10-11, where such objects could be detected by the James Webb Space Telescope. We conclude, with minor theoretical caveats, that baryonic streaming motions are unlikely to pose a significant additional obstacle to the formation of the observed high-redshift quasar SMBHs. Nor do they appreciably affect the heating and reionization histories of the Universe or the merger rates of nuclear BHs in the mass and redshift ranges of interest for proposed gravitational-wave detectors.Comment: 9 pages, 5 figures, accepted for publication in MNRA

    Rotor aeroelastic stability coupled with helicopter body motion

    Get PDF
    A 5.5-foot-diameter, soft-in-plane, hingeless-rotor system was tested on a gimbal which allowed the helicopter rigid-body pitch and roll motions. Coupled rotor/airframe aeroelastic stability boundaries were explored and the modal damping ratios were measured. The time histories were correlated with analysis with excellent agreement. The effects of forward speed and some rotor design parameters on the coupled rotor/airframe stability were explored both by model and analysis. Some physical insights into the coupled stability phenomenon are suggested

    A Remark on Boundary Effects in Static Vacuum Initial Data sets

    Full text link
    Let (M, g) be an asymptotically flat static vacuum initial data set with non-empty compact boundary. We prove that (M, g) is isometric to a spacelike slice of a Schwarzschild spacetime under the mere assumption that the boundary of (M, g) has zero mean curvature, hence generalizing a classic result of Bunting and Masood-ul-Alam. In the case that the boundary has constant positive mean curvature and satisfies a stability condition, we derive an upper bound of the ADM mass of (M, g) in terms of the area and mean curvature of the boundary. Our discussion is motivated by Bartnik's quasi-local mass definition.Comment: 10 pages, to be published in Classical and Quantum Gravit
    • …
    corecore