20 research outputs found
Predator-Induced Vertical Behavior of a Ctenophore
Although many studies have focused on Mnemiopsis leidyi predation, little is known about the role of this ctenophore as prey when abundant in native and invaded pelagic systems. We examined the response of the ctenophore M. leidyi to the predatory ctenophore Beroe ovata in an experiment in which the two species could potentially sense each other while being physically separated. On average, M. leidyi responded to the predator’s presence by increasing variability in swimming speeds and by lowering their vertical distribution. Such behavior may help explain field records of vertical migration, as well as stratified and near-bottom distributions of M. leidyi
Atlantic Leatherback Migratory Paths and Temporary Residence Areas
BACKGROUND: Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. METHODOLOGY/PRINCIPAL FINDINGS: Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. CONCLUSIONS/SIGNIFICANCE: Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly influenced by environmental conditions. This high degree of behavioural plasticity in Atlantic leatherback turtles makes species-targeted conservation strategies challenging and stresses the need for a larger dataset (>100 individuals) for providing general recommendations in terms of conservation
Massive Consumption of Gelatinous Plankton by Mediterranean Apex Predators
Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing