21 research outputs found

    Ovarian dysfunction and FMR1 alleles in a large Italian family with POF and FRAXA disorders: case report

    Get PDF
    BACKGROUND: The association between premature ovarian failure (POF) and the FMR1 repeat number (41> CGG(n)< 200) has been widely investigated. Current findings suggest that the risk estimation for POF can be calculated in the offspring of women with pre-mutated FMR1 alleles. CASE PRESENTATION: We describe the coexistence in a large Italian kindred of Fragile X syndrome and familial POF in females with ovarian dysfunctions who carried normal or expanded FMR1 alleles. Genetic analysis of the FMR1 gene in over three generations of females revealed that six carried pre-mutated alleles (61–200), of which two were also affected by POF. However a young woman, who presented a severe ovarian failure with early onset, carried normal FMR1 alleles (<40). The coexistence within the same family of two dysfunctional ovarian conditions, one FMR1-related and one not FMR1-related, suggests that the complexity of familial POF conditions is larger than expected. CONCLUSION: Our case study represents a helpful observation and will provide familial cases with heterogeneous etiology that could be further studied when candidate genes in addition to the FMR1 premutation will be available

    MRX87 family with Aristaless X dup24bp mutation and implication for polyAlanine expansions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cognitive impairments are heterogeneous conditions, and it is estimated that 10% may be caused by a defect of mental function genes on the X chromosome. One of those genes is <it>Aristaless related homeobox </it>(<it>ARX</it>) encoding a polyA-rich homeobox transcription factor essential for cerebral patterning and its mutations cause different neurologic disorders. We reported on the clinical and genetic analysis of an Italian family with X-linked mental retardation (XLMR) and intra-familial heterogeneity, and provided insight into its molecular defect.</p> <p>Methods</p> <p>We carried out on linkage-candidate gene studies in a new MRX family (MRX87). All coding regions and exon-intron boundaries of ARX gene were analysed by direct sequencing.</p> <p>Results</p> <p>MRX87 patients had moderate to profound cognition impairment and a combination of minor congenital anomalies. The disease locus, MRX87, was mapped between DXS7104 and DXS1214, placing it in Xp22-p21 interval, a hot spot region for mental handicap. An in frame duplication of 24 bp (ARXdup24) in the second polyAlanine tract (polyA_II) in ARX was identified.</p> <p>Conclusion</p> <p>Our study underlines the role of ARXdup24 as a critical mutational site causing mental retardation linked to Xp22. Phenotypic heterogeneity of MRX87 patients represents a new observation relevant to the functional consequences of polyAlanine expansions enriching the puzzling complexity of ARXdup24-linked diseases.</p

    Analysis of a Set of KDM5C Regulatory Genes Mutated in Neurodevelopmental Disorders Identifies Temporal Coexpression Brain Signatures

    Get PDF
    Dysregulation of transcriptional pathways is observed in multiple forms of neurodevelopmental disorders (NDDs), such as intellectual disability (ID), epilepsy and autism spectrum disorder (ASD). We previously demonstrated that the NDD genes encoding lysine-specific demethylase 5C (KDM5C) and its transcriptional regulators Aristaless related-homeobox (ARX), PHD Finger Protein 8 (PHF8) and Zinc Finger Protein 711 (ZNF711) are functionally connected. Here, we show their relation to each other with respect to the expression levels in human and mouse datasets and in vivo mouse analysis indicating that the coexpression of these syntenic X-chromosomal genes is temporally regulated in brain areas and cellular sub-types. In co-immunoprecipitation assays, we found that the homeotic transcription factor ARX interacts with the histone demethylase PHF8, indicating that this transcriptional axis is highly intersected. Furthermore, the functional impact of pathogenic mutations of ARX, KDM5C, PHF8 and ZNF711 was tested in lymphoblastoid cell lines (LCLs) derived from children with varying levels of syndromic ID establishing the direct correlation between defects in the KDM5C-H3K4me3 pathway and ID severity. These findings reveal novel insights into epigenetic processes underpinning NDD pathogenesis and provide new avenues for assessing developmental timing and critical windows for potential treatments

    Suberoylanilide Hydroxamic Acid (SAHA) Is a Driver Molecule of Neuroplasticity: Implication for Neurological Diseases

    No full text
    Neuroplasticity is a crucial property of the central nervous system to change its activity in response to intrinsic or extrinsic stimuli. This is mainly achieved through the promotion of changes in the epigenome. One of the epi-drivers priming this process is suberoylanilide hydroxamic acid (SAHA or Vorinostat), a pan-histone deacetylase inhibitor that modulates and promotes neuroplasticity in healthy and disease conditions. Knowledge of the specific molecular changes induced by this epidrug is an important area of neuro-epigenetics for the identification of new compounds to treat cognition impairment and/or epilepsy. In this review, we summarize the findings obtained in cellular and animal models of various brain disorders, highlighting the multiple mechanisms activated by SAHA, such as improvement of memory, learning and behavior, and correction of faulty neuronal functioning. Supporting this evidence, in vitro and in vivo data underline how SAHA positively regulates the expression of neuronal genes and microtubule dynamics, induces neurite outgrowth and spine density, and enhances synaptic transmission and potentiation. In particular, we outline studies regarding neurodevelopmental disorders with pharmaco-resistant seizures and/or severe cognitive impairment that to date lack effective drug treatments in which SAHA could ameliorate defective neuroplasticity

    Heterozygosity mapping by quantitative fluorescent PCR reveals an interstitial deletion in Xq26.2-q28 associated with ovarian dysfunction

    No full text
    Background: Deletions of Xq chromosome are reported for a number of familial conditions exhibiting premature ovarian failure (POF) and early menopause (EM). Methods and results: We describe the inheritance of an interstitial deletion of the long arm of the X chromosome associated with either POF or EM in the same family. Cytogenetic studies and heterozygosity mapping by quantitative fluorescent PCR revealed a 46,X,del(X)(q26.2-q28) karyotype in a POF female, in her EM mother, and also in her aborted fetus with severe cardiopathy. Applying a microsatellite approach, we have narrowed the extension of an identical interstitial deletion located between DXS1187 and DXS1073. These data, in line with other mapped deletions, single out the proximal Xq28 as the region most frequently involved in ovarian failure. We also propose that other factors may influence the phenotypic effect of this alteration. Indeed, skewed X inactivation has been ascertained in EM and POF to be associated with different X haplotypes. Conclusion: Our analysis indicates that Xq26.2-q28 deletion is responsible for gonad dysgenesis in a family with EM/POF. The dissimilar deletion penetrance may be due to epigenetic modifications of other X genes that can contribute to human reproduction, highlighting that ovarian failure should be considered as a multifactorial disease. © The Author 2005. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved
    corecore