47 research outputs found
Transient excited singlet state absorption in Rhodamine 6G
Transient excited singlet state absorption (ESSA) has been studied in Rhodamine 6G in ethanol using a nitrogen laser and nitrogen laser-pumped dye laser. Broad absorption with several submaxima and possible shoulders, which represent the vibrational structure, has been observed in Rhodamine 6G in the region, 4175-4640 Å . The position of the lowest vibrational level of the first excited singlet state S 1 has been determined from the crossing point of the long and short wavelength spectral wings of absorption and fluorescence respectively. The energy level scheme of the molecule has been obtained with the help of the absorption and fluorescence spectra recorded. The observed structure in ESSA has been tentatively interpreted to be due to transitions from the different vibrational levels of S 1 to one or more vibrational levels of the upper singlet electronic state S4
LCLS Injector Drive Laser
Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements
Effective Scenario of Loop Quantum Cosmology
Semiclassical states in isotropic loop quantum cosmology are employed to show
that the improved dynamics has the correct classical limit. The effective
Hamiltonian for the quantum cosmological model with a massless scalar field is
thus obtained, which incorporates also the next to leading order quantum
corrections. The possibility that the higher order correction terms may lead to
significant departure from the leading order effective scenario is revealed. If
the semiclassicality of the model is maintained in the large scale limit, there
are great possibilities for Friedmann expanding universe to undergo a
collapse in the future due to the quantum gravity effect. Thus the quantum
bounce and collapse may contribute a cyclic universe in the new scenario.Comment: 4 pages, 2 figures; version published in PR
A biominĹ‘sĂtĂ©s hatása a fogyasztĂłk Ă©rzĂ©kelĂ©sĂ©re Ă©s attitűdjĂ©re csokoládĂ©k esetĂ©n
The time–energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modu- lations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science
Recommended from our members
Initial Commissioning Experience With the LCLS Injector
The Linac Coherent Light Source (LCLS) is a SASE xray Free-Electron Laser (FEL) project presently under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam is taking place during the spring and summer of 2007. The second phase of construction, including second bunch compressor and full linac, will begin later, in the fall of 2007. We report here on experience gained during the first phase of machine commissioning, including RF photocathode gun, linac booster section, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics
Recommended from our members
Observation of Coherent Optical Transition Radiation in the LCLS Linac
The beam diagnostics in the linac for the Linac Coherent Light Source (LCLS) X-ray FEL project at SLAC includes optical transition radiation (OTR) screens for measurements of transverse and longitudinal beam properties. We report on observations of coherent light emission from the OTR screens (COTR) at visible wavelengths from the uncompressed and compressed electron beam at various stages in the accelerator
Recommended from our members
Commissioning of the LCLS LINAC
The Linac Coherent Light Source (LCLS) X-ray free electron laser project is currently under construction at the Stanford Linear Accelerator Center (SLAC). A new injector and upgrades to the existing accelerator were installed in two phases in 2006 and 2007. We report on the commissioning of the injector, the two new bunch compressors at 250MeV and 4.3 GeV, and transverse and longitudinal beam diagnostics up to the end of the existing linac at 13.6 GeV. The commissioning of the new transfer line from the end of the linac to the undulator is scheduled to start in November 2008 and for the undulator in March 2009 with first light to be expected in July 2009
Recommended from our members
Commissioning of the LCLS Linac and Bunch Compressors
The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor, was commissioned in the spring and summer of 2007. The second phase of commissioning, including the second bunch compressor and various main linac modifications, was completed in January through August of 2008. We report here on experience gained during this second phase of machine commissioning, including the injector, the first and second bunch compressor stages, the linac up to 14 GeV, and beam stability measurements. The final commissioning phase, including the undulator and the long transport line from the linac, is set to begin in December 2008, with first light expected in July 2009
Recommended from our members
Commissioning Results of the LCLS Injector
The Linac Coherent Light Source (LCLS) is a SASE xray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive-laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam has recently been completed. The second phase of construction, including second bunch compressor and full linac, is planned for 2008. In this paper, we report experimental results and experience gained during the first phase of machine commissioning. This includes the cathode, drive laser, RF photocathode gun, linac booster section, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics