117 research outputs found
?????? ?????? ????????? ????????? ?????? ?????? ?????? ??????
Department of Urban and Environmental Engineering (Environmental Science and Engineering)Sea ice closely interacts with the atmosphere and ocean systems. Land fast sea ice (fast ice) is a kind of sea ice attached to the shore, ice shelves, or grounded icebergs. It is widely distributed along the Antarctic coast and acts as an interface between the atmosphere and the ocean, affecting heat balance feedback, thermal insulation effects, and deep water formation depending on the temporal and spatial effects of the environmental conditions. It also plays an important role in the biological aspects of Antarctica. Attached to the Antarctic glacier is strongly associated with calving events of ice shelf as it is physically coupled with glaciers at the terminus. The existing Antarctic fast ice has been mainly focused on the East Antarctic, especially for the research on long-term fast ice. Several case studies for West Antarctic fast ice with satellite images were performed in local areas. Various types of satellite data and detection techniques were utilized to successfully detect fast ice. In addition, long-term fast ice maps specifically focused on the Amundsen sea of West Antarctica were generated to investigate the distribution and variability of fast ice.
This thesis reports the results of fast ice detection algorithms that have been developed using various satellite images that can be used for fast ice detection. Along with the use of multiple satellite data, the proposed fast ice detection algorithms can more effectively detect fast ice, which then allows to obtain more accurate fast ice detection and produce long-term fast ice with high accuracy. Especially, the distribution and variability of time-series fast ice in West Antarctica, which is more concentrated in the Amundsen Sea, were analyzed together with bathymetry data and the distribution of glacier icebergs.
In order to detect fast ice, machine learning techniques were basically used in this thesis. Two classes (i.e. fast ice and non-fast ice) were classified. Using MODIS images, there was a problem that fast ice was not produced in cloud cover areas and the polar night season, which is winter season in Antarctica. MODIS and AMSR-E satellite data were selectively used to solve the cloud contamination problem. Correlation-related variables were finally added based on the fact that fast ice is motionless for a certain period of time, and fast ice detection was performed at 15-day intervals using the improved input variables. Active microwave sensor data, ALOS PALSAR, was also used to detect fast ice and to validate fast ice detection results. Its high-spatial resolution allows to extract fast ice boundary more accurately. Fast ice detections showed good agreement with available ALOS PALSAR SAR images and MODIS reflectance images. Nearly decade-long fast ice extents were produced in the Amundsen Sea of West Antarctica and analyzed in terms of spatiotemporal variations with bathymetry and icebergs calved from ice shelves in study area. In addition, anomalous fast ice breakup events were examined, which suggests the importance of fast ice on the stability of ice shelves.clos
A New Satellite-Based Retrieval of Low-Cloud Liquid-Water Path Using Machine Learning and Meteosat SEVIRI Data
Clouds are one of the major uncertainties of the climate system. The study of cloud processes requires information on cloud physical properties, in particular liquid water path (LWP). This parameter is commonly retrieved from satellite data using look-up table approaches. However, existing LWP retrievals come with uncertainties related to assumptions inherent in physical retrievals. Here, we present a new retrieval technique for cloud LWP based on a statistical machine learning model. The approach utilizes spectral information from geostationary satellite channels of Meteosat Spinning-Enhanced Visible and Infrared Imager (SEVIRI), as well as satellite viewing geometry. As ground truth, data from CloudNet stations were used to train the model. We found that LWP predicted by the machine-learning model agrees substantially better with CloudNet observations than a current physics-based product, the Climate Monitoring Satellite Application Facility (CM SAF) CLoud property dAtAset using SEVIRI, edition 2 (CLAAS-2), highlighting the potential of such approaches for future retrieval developments
????????? ?????? ????????????????????? ????????? ?????? ???????????? ?????? ??????
Particulate matter (PM10 and PM2.5 with a diameter less than 10 and 2.5 ??m, respectively) can be absorbed by the human body and adversely affect human health. Although most of the PM monitoring are based on ground-based observations, they are limited to point-based measurement sites, which leads to uncertainty in PM estimation for regions without observation sites. It is possible to overcome their spatial limitation by using satellite data. In this study, we developed machine learning-based retrieval algorithm for ground-level PM10 and PM2.5 concentrations using aerosol parameters from Geostationary Ocean Color Imager (GOCI) satellite and various meteorological parameters from a numerical weather prediction model during January to December of 2019. Gradient Boosted Regression Trees (GBRT) and Light Gradient Boosting Machine (LightGBM) were used to estimate PM concentrations. The model performances were examined for two types of feature sets-all input parameters (Feature set 1) and a subset of input parameters without meteorological and land-cover parameters (Feature set 2). Both models showed higher accuracy (about 10 % higher in R2) by using the Feature set 1 than the Feature set 2. The GBRT model using Feature set 1 was chosen as the final model for further analysis (PM10: R2 = 0.82, nRMSE = 34.9 %, PM2.5: R2 = 0.75, nRMSE = 35.6 %). The spatial distribution of the seasonal and annual-averaged PM concentrations was similar with in-situ observations, except for the northeastern part of China with bright surface reflectance. Their spatial distribution and seasonal changes were well matched with in-situ measurements. ?? 2021 Korean Society of Remote Sensing. All rights reserved
Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection
Satellite altimeters have been used to monitor Arctic sea ice thickness since the early 2000s. In order to estimate sea ice thickness from satellite altimeter data, leads (i.e., cracks between ice floes) should first be identified for the calculation of sea ice freeboard. In this study, we proposed novel approaches for lead detection using two machine learning algorithms: decision trees and random forest. CryoSat-2 satellite data collected in March and April of 2011-2014 over the Arctic region were used to extract waveform parameters that show the characteristics of leads, ice floes and ocean, including stack standard deviation, stack skewness, stack kurtosis, pulse peakiness and backscatter sigma-0. The parameters were used to identify leads in the machine learning models. Results show that the proposed approaches, with overall accuracy >90%, produced much better performance than existing lead detection methods based on simple thresholding approaches. Sea ice thickness estimated based on the machine learning-detected leads was compared to the averaged Airborne Electromagnetic (AEM)-bird data collected over two days during the CryoSat Validation experiment (CryoVex) field campaign in April 2011. This comparison showed that the proposed machine learning methods had better performance (up to r = 0.83 and Root Mean Square Error (RMSE) = 0.29 m) compared to thickness estimation based on existing lead detection methods (RMSE = 0.86-0.93 m). Sea ice thickness based on the machine learning approaches showed a consistent decline from 2011-2013 and rebounded in 2014.open0
Improved retrievals of aerosol optical depth and fine mode fraction from GOCI geostationary satellite data using machine learning over East Asia
Aerosol Optical Depth (AOD) and Fine Mode Fraction (FMF) are important information for air quality research. Both are mainly obtained from satellite data based on a radiative transfer model, which requires heavy computation and has uncertainties. We proposed machine learning-based models to estimate AOD and FMF directly from Geostationary Ocean Color Imager (GOCI) reflectances over East Asia. Hourly AOD and FMF were estimated for 00-07 UTC at a spatial resolution of 6 km using the GOCI reflectances, their channel differences (with 30-day minimum reflectance), solar and satellite viewing geometry, meteorological data, geographical information, and the Day Of the Year (DOY) as input features. Light Gradient Boosting Machine (LightGBM) and Random Forest (RF) machine learning approaches were applied and evaluated using random, spatial, and temporal 10-fold cross-validation with ground-based observation data. LightGBM (R-2 = 0.89-0.93 and RMSE = 0.071-0.091 for AOD and R-2 = 0.67-0.81 and RMSE = 0.079-0.105 for FMF) and RF (R-2 = 0.88-0.92 and RMSE = 0.080-0.095 for AOD and R-2 = 0.59-0.76 and RMSE = 0.092-0.118 for FMF) agreed well with the in-situ data. The machine learning models showed much smaller errors when compared to GOCI-based Yonsei aerosol retrieval and the Moderate Resolution Imaging Spectroradiometer Dark Target and Deep Blue algorithms. The Shapley Additive exPlanations values (SHAP)-based feature importance result revealed that the 412 nm band (i. e., ch01) contributed most in both AOD and FMF retrievals. Relative humidity and air temperature were also identified as important factors especially for FMF, which suggests that considering meteorological conditions helps improve AOD and FMF estimation. Besides, spatial distribution of AOD and FMF showed that using the channel difference features to indirectly consider surface reflectance was very helpful for AOD retrieval on bright surfaces
Retrieval of Melt Ponds on Arctic Multiyear Sea Ice in Summer from TerraSAR-X Dual-Polarization Data Using Machine Learning Approaches: A Case Study in the Chukchi Sea with Mid-Incidence Angle Data
Melt ponds, a common feature on Arctic sea ice, absorb most of the incoming solar radiation and have a large effect on the melting rate of sea ice, which significantly influences climate change. Therefore, it is very important to monitor melt ponds in order to better understand the sea ice-climate interaction. In this study, melt pond retrieval models were developed using the TerraSAR-X dual-polarization synthetic aperture radar (SAR) data with mid-incidence angle obtained in a summer multiyear sea ice area in the Chukchi Sea, the Western Arctic, based on two rule-based machine learning approachesdecision trees (DT) and random forest (RF)in order to derive melt pond statistics at high spatial resolution and to identify key polarimetric parameters for melt pond detection. Melt ponds, sea ice and open water were delineated from the airborne SAR images (0.3-m resolution), which were used as a reference dataset. A total of eight polarimetric parameters (HH and VV backscattering coefficients, co-polarization ratio, co-polarization phase difference, co-polarization correlation coefficient, alpha angle, entropy and anisotropy) were derived from the TerraSAR-X dual-polarization data and then used as input variables for the machine learning models. The DT and RF models could not effectively discriminate melt ponds from open water when using only the polarimetric parameters. This is because melt ponds showed similar polarimetric signatures to open water. The average and standard deviation of the polarimetric parameters based on a 15 x 15 pixel window were supplemented to the input variables in order to consider the difference between the spatial texture of melt ponds and open water. Both the DT and RF models using the polarimetric parameters and their texture features produced improved performance for the retrieval of melt ponds, and RF was superior to DT. The HH backscattering coefficient was identified as the variable contributing the most, and its spatial standard deviation was the next most contributing one to the classification of open water, sea ice and melt ponds in the RF model. The average of the co-polarization phase difference and the alpha angle in a mid-incidence angle were also identified as the important variables in the RF model. The melt pond fraction and sea ice concentration retrieved from the RF-derived melt pond map showed root mean square deviations of 2.4% and 4.9%, respectively, compared to those from the reference melt pond maps. This indicates that there is potential to accurately monitor melt ponds on multiyear sea ice in the summer season at a local scale using high-resolution dual-polarization SAR data.open
Meteorology-driven variability of air pollution (PM₁) revealed with explainable machine learning
Air pollution, in particular high concentrations of particulate matter smaller than 1 µm in diameter (PM1), continues to be a major health problem, and meteorology is known to substantially influence atmospheric PM concentrations. However, the scientific understanding of the ways in which complex interactions of meteorological factors lead to high-pollution episodes is inconclusive. In this study, a novel, data-driven approach based on empirical relationships is used to characterize and better understand the meteorology-driven component of PM1 variability. A tree-based machine learning model is set up to reproduce concentrations of speciated PM1 at a suburban site southwest of Paris, France, using meteorological variables as input features. The model is able to capture the majority of occurring variance of mean afternoon total PM1 concentrations (coefficient of determination (R2) of 0.58), with model performance depending on the individual PM1 species predicted. Based on the models, an isolation and quantification of individual, season-specific meteorological influences for process understanding at the measurement site is achieved using SHapley Additive exPlanation (SHAP) regression values. Model results suggest that winter pollution episodes are often driven by a combination of shallow mixed layer heights (MLHs), low temperatures, low wind speeds, or inflow from northeastern wind directions. Contributions of MLHs to the winter pollution episodes are quantified to be on average ∼5 µg/m3 for MLHs below <500 m a.g.l. Temperatures below freezing initiate formation processes and increase local emissions related to residential heating, amounting to a contribution to predicted PM1 concentrations of as much as ∼9 µg/m3. Northeasterly winds are found to contribute ∼5 µg/m3 to predicted PM1 concentrations (combined effects of u- and v-wind components), by advecting particles from source regions, e.g. central Europe or the Paris region. Meteorological drivers of unusually high PM1 concentrations in summer are temperatures above ∼25 ∘C (contributions of up to ∼2.5 µg/m3), dry spells of several days (maximum contributions of ∼1.5 µg/m3), and wind speeds below ∼2 m/s (maximum contributions of ∼3 µg/m3), which cause a lack of dispersion. High-resolution case studies are conducted showing a large variability of processes that can lead to high-pollution episodes. The identification of these meteorological conditions that increase air pollution could help policy makers to adapt policy measures, issue warnings to the public, or assess the effectiveness of air pollution measures
- …