55,249 research outputs found

    Single fermion manipulation via superconducting phase differences in multiterminal Josephson junctions

    Get PDF
    We show how the superconducting phase difference in a Josephson junction may be used to split the Kramers degeneracy of its energy levels and to remove all the properties associated with time reversal symmetry. The superconducting phase difference is known to be ineffective in two-terminal short Josephson junctions, where irrespective of the junction structure the induced Kramers degeneracy splitting is suppressed and the ground state fermion parity must stay even, so that a protected zero-energy Andreev level crossing may never appear. Our main result is that these limitations can be completely avoided by using multi-terminal Josephson junctions. There the Kramers degeneracy breaking becomes comparable to the superconducting gap, and applying phase differences may cause the change of the ground state fermion parity from even to odd. We prove that the necessary condition for the appearance of a fermion parity switch is the presence of a "discrete vortex" in the junction: the situation when the phases of the superconducting leads wind by 2π2\pi. Our approach offers new strategies for creation of Majorana bound states as well as spin manipulation. Our proposal can be implemented using any low density, high spin-orbit material such as InAs quantum wells, and can be detected using standard tools.Comment: Source code available as ancillary files. 10 pages, 7 figures. v2: minor changes, published versio

    Non-Markovian quantum state diffusion for an open quantum system in fermionic environments

    Full text link
    Non-Markovian quantum state diffusion (NMQSD) provides a powerful approach to the dynamics of an open quantum system in bosonic environments. Here we develop an NMQSD method to study the open quantum system in fermionic environments. This problem involves anticommutative noise functions (i.e., Grassmann variables) that are intrinsically different from the noise functions of bosonic baths. We obtain the NMQSD equation for quantum states of the system and the non-Markovian master equation. Moreover, we apply this NMQSD method to single and double quantum-dot systems.Comment: 9 pages, 1 figur

    Detection of the melanoma biomarker TROY using silicon nanowire field-effect transistors

    Full text link
    Antibody-functionalized silicon nanowire field-effect transistors have been shown to exhibit excellent analyte detection sensitivity enabling sensing of analyte concentrations at levels not readily accessible by other methods. One example where accurate measurement of small concentrations is necessary is detection of serum biomarkers, such as the recently discovered tumor necrosis factor receptor superfamily member TROY (TNFRSF19), which may serve as a biomarker for melanoma. TROY is normally only present in brain but it is aberrantly expressed in primary and metastatic melanoma cells and shed into the surrounding environment. In this study, we show the detection of different concentrations of TROY in buffer solution using top-down fabricated silicon nanowires. We demonstrate the selectivity of our sensors by comparing the signal with that obtained from bovine serum albumin in buffer solution. Both the signal size and the reaction kinetics serve to distinguish the two signals. Using a fast-mixing two-compartment reaction model, we are able to extract the association and dissociation rate constants for the reaction of TROY with the antibody immobilized on the sensor surface

    Sensing of the melanoma biomarker TROY using silicon nanowire field-effect transistors

    Full text link
    Antibody-functionalized silicon nanowire field-effect transistors have been shown to exhibit excellent analyte detection sensitivity enabling sensing of analyte concentrations at levels not readily accessible by other methods. One example where accurate measurement of small concentrations is necessary is detection of serum biomarkers, such as the recently discovered tumor necrosis factor receptor superfamily member TROY (TNFRSF19), which may serve as a biomarker for melanoma. TROY is normally only present in brain but it is aberrantly expressed in primary and metastatic melanoma cells and shed into the surrounding environment. In this study, we show the detection of different concentrations of TROY in buffer solution using top-down fabricated silicon nanowires. We demonstrate the selectivity of our sensors by comparing the signal with that obtained from bovine serum albumin in buffer solution. Both the signal size and the reaction kinetics serve to distinguish the two signals. Using a fast-mixing two-compartment reaction model we are able to extract the association and dissociation rate constants for the reaction of TROY with the antibody immobilized on the sensor surface.The authors thank Biosite Diagnostics (San Diego, CA) for providing TROY antibodies. The authors acknowledge NIH, NSF, and Battelle Memorial Institute for support of this work. (NIH; NSF; Battelle Memorial Institute)https://pubs.acs.org/doi/pdf/10.1021/acssensors.6b00017Accepted manuscrip

    Intermediate-statistics quantum bracket, coherent state, oscillator, and representation of angular momentum (su(2)) algebra

    Full text link
    In this paper, we first discuss the general properties of an intermediate-statistics quantum bracket, [u,v]n=uvei2π/(n+1)vu[ u,v]_{n}=uv-e^{i2\pi /(n+1)}vu, which corresponds to intermediate statistics in which the maximum occupation number of one quantum state is an arbitrary integer, nn. A further study of the operator realization of intermediate statistics is given. We construct the intermediate-statistics coherent state. An intermediate-statistics oscillator is constructed, which returns to bosonic and fermionic oscillators respectively when nn\to \infty and n=1n=1. The energy spectrum of such an intermediate-statistics oscillator is calculated. Finally, we discuss the intermediate-statistics representation of angular momentum (su(2)su(2)) algebra. Moreover, a further study of the operator realization of intermediate statistics is given in the Appendix.Comment: 12 pages, no figures. Revte

    Spin Dependence of Interfacial Reflection Phase Shift at Cu/Co Interface

    Full text link
    The spin dependent reflection at the interface is the key element to understand the spin transport. By completely solving the scattering problem based on first principles method, we obtained the spin resolved reflectivity spectra. The comparison of our theoretical results with experiment is good in a large energy scale from Fermi level to energy above vacuum level. It is found that interfacial distortion is crucial for understanding the spin dependence of the phase gain at the Cu|Co interface. Near the Fermi level, image state plays an important role to the phase accumulation in the copper film.Comment: 6 papges, 3 figures, accepted by Physical Review

    Simple Metals at High Pressure

    Full text link
    In this lecture we review high-pressure phase transition sequences exhibited by simple elements, looking at the examples of the main group I, II, IV, V, and VI elements. General trends are established by analyzing the changes in coordination number on compression. Experimentally found phase transitions and crystal structures are discussed with a brief description of the present theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice course on High-Pressure Crystallography in June 2009, Sicily, Ital
    corecore