8 research outputs found

    Association between Asymptomatic Unilateral Internal Carotid Artery Stenosis and Electrophysiological Function of the Retina and Optic Nerve

    Get PDF
    Purpose. This study was designed to assess retinal and optic nerve bioelectrical function in patients with unilateral asymptomatic but hemodynamically significant internal carotid artery stenosis (ICAS). Methods. Forty-two subjects with a diagnosis of unilateral ICAS and 34 controls were analyzed. Full-field electroretinogram (ERG), pattern electroretinogram (PERG), and pattern visual-evoked potentials, as well as optical coherence tomography and ophthalmological examination, were performed. Data analysis included eyes ipsilateral to ICAS (EIS) and eyes contralateral to ICAS (ECS). Results. Intraocular pressure was significantly decreased in EIS and ECS compared to that in the controls. In the macula, both the cube average thickness and cube volume values were significantly reduced both in EIS and ECS compared to those in the controls. Similarly, PERG P50 and N95 wave amplitudes were significantly smaller in EIS and ECS compared to those in the controls. The ERG rod b-wave and rod-cone a-wave amplitudes were decreased, and implicit times were significantly prolonged, whereas the OP wave index was reduced in EIS compared to that in the controls. No differences in IOP, OCT, or ERG and PERG parameters were identified between EIS and ECS. Conclusions. Our study demonstrated that retinal bioelectrical function is negatively affected by ICAS despite the absence of objective clinical signs and symptoms of ocular ischemia

    Preclinical Evaluation of Long-Term Neuroprotective Effects of BDNF-Engineered Mesenchymal Stromal Cells as Intravitreal Therapy for Chronic Retinal Degeneration in Rd6 Mutant Mice

    No full text
    This study aimed to investigate whether the transplantation of genetically engineered bone marrow-derived mesenchymal stromal cells (MSCs) to overexpress brain-derived neurotrophic factor (BDNF) could rescue the chronic degenerative process of slow retinal degeneration in the rd6 (retinal degeneration 6) mouse model and sought to identify the potential underlying mechanisms. Rd6 mice were subjected to the intravitreal injection of lentivirally modified MSC-BDNF or unmodified MSC or saline. In vivo morphology, electrophysiological retinal function (ERG), and the expression of apoptosis-related genes, as well as BDNF and its receptor (TrkB), were assessed in retinas collected at 28 days and three months after transplantation. We observed that cells survived for at least three months after transplantation. MSC-BDNF preferentially integrated into the outer retinal layers and considerably rescued damaged retinal cells, as evaluated by ERG and immunofluorescence staining. Additionally, compared with controls, the therapy with MSC-BDNF was associated with the induction of molecular changes related to anti-apoptotic signaling. In conclusion, BDNF overexpression observed in retinas after MSC-BDNF treatment could enhance the neuroprotective properties of transplanted autologous MSCs alone in the chronically degenerated retina. This research provides evidence for the long-term efficacy of genetically-modified MSC and may represent a strategy for treating various forms of degenerative retinopathies in the future

    Effects of Sterilization Methods on Different 3D Printable Materials for Templates of Physician-Modified Aortic Stent Grafts Used in Vascular Surgery—A Preliminary Study

    No full text
    Three-dimensionally-printed aortic templates are increasingly being used to aid in the modification of stent grafts in the treatment of urgent, complex aortic disorders, often of an emergency nature. The direct contact between the aortic template and the stent graft implies the necessity of complete sterility. Currently, the efficacy of sterilizing aortic templates and the effect of sterilization on the geometry of tubular aortic models are unknown. A complex case of aortic arch dissection was selected to prepare a 3D-printed aortic arch template, which was then manufactured in six popular printing materials: polylactic acid (PLA), nylon, polypropylene (PP), polyethylene terephthalate glycol (PETG), and a rigid and flexible photopolymer resin using fused deposition modeling (FDM) and stereolithography (SLA). The 3D models were contaminated with Geobacillus stearothermophilus broth and Bacillus atrophaeus. The sterilization was performed using three different methods: heat (105 °C and 121 °C), hydrogen peroxide plasma, and ethylene oxide gas. Before and after sterilization, the aortic templates were scanned using computed tomography to detect any changes in their morphology by comparing the dimensions. All sterilization methods were effective in the elimination of microorganisms. Steam sterilization in an autoclave at 121 °C caused significant deformation of the aortic templates made of PLA, PETG, and PP. The other materials had stable geometries, and changes during mesh comparisons were found to be submillimeter. Similarly, plasma, gas, and heat at 105 °C did not change the shapes of aortic templates observed macroscopically and using mesh analysis. All mean geometry differences were smaller than 0.5 mm. All sterilization protocols tested in our study were equally effective in destroying microorganisms; however, differences occurred in the ability to induce 3D object deformation. Sterilization at high temperatures deformed aortic templates composed of PLA, PETG, and PP. This method was suitable for nylon, flexible, and rigid resin-based models. Importantly, plasma and gas sterilization were appropriate for all tested printing materials, including PLA, PETG, PP, nylon, flexible and rigid resins. Moreover, sterilization of all the printed models using our novel protocol for steam autoclaving at 105 °C was also 100% effective, which could represent a significant advantage for health centers, which can therefore use one of the most popular and cheap methods of medical equipment disinfection for the sterilization of 3D models as well

    Impact of Carotid Endarterectomy on Choroidal Thickness and Volume in Enhanced Depth Optical Coherence Tomography Imaging

    No full text
    Purpose. Carotid endarterectomy (CEA) is considered an effective therapeutic method for improving ocular circulation. The choroid is a predominantly vascular tissue; thus, systemic and local vascular alterations may influence its morphology and function. The aim of the current study was to analyse changes in choroidal thickness and volume in patients with significant internal carotid artery stenosis (ICAS) before and after unilateral CEA. Methods. The 42 eyes of the 21 asymptomatic patients included in the study were divided into two groups: those ipsilateral (EIE) and those contralateral (ECE) to CEA. All participants underwent a complete ophthalmologic examination, including enhanced depth imaging-optical coherence tomography (EDI-OCT). A comparative analysis of subfoveal thickness (CT) and choroidal volume (CV) measured in nine Early Treatment of Diabetic Retinopathy Study (ETDRS) subfields at baseline, on the 2nd day after CEA, and in the 3rd month after CEA was performed. Results. In the EIE and ECE groups, no significant differences in either CT or CV values before and on the 2nd day after the CEA were observed. In the EIE group, a significant increase in CT and CV in the 3rd month after CEA compared to baseline was noted in the specific ETDRS region. Changes in CT and CV after surgery were positively correlated with the participants’ physical activity status and diastolic blood pressure and negatively correlated with the participants’ age and smoking status. Additionally, the analysis of changes in CV after CEA showed a positive correlation between the EIE and ECE groups. Conclusions. CT and CV fluctuations in the central and perifoveal areas visualized with EDI-OCT enabled the observation of the processes of tissue adaptation to variable blood flow conditions

    CXCL8, CCL2, and CMV Seropositivity as New Prognostic Factors for a Severe COVID-19 Course

    No full text
    The exact pathophysiology of severe COVID-19 is not entirely elucidated, but it has been established that hyperinflammatory responses and cytokine storms play important roles. The aim of this study was to examine CMV status, select chemokines, and complement components in COVID-19, and how concentrations of given molecules differ over time at both molecular and proteomic levels. A total of 210 COVID-19 patients (50 ICU and 160 non-ICU patients) and 80 healthy controls were enrolled in this study. Concentrations of select chemokines (CXCL8, CXCL10, CCL2, CCL3, CCR1) and complement factors (C2, C9, CFD, C4BPA, C5AR1, CR1) were examined at mRNA and protein levels with regard to a COVID-19 course (ICU vs. non-ICU group) and CMV status at different time intervals. We detected several significant differences in chemokines and complement profiles between ICU and non-ICU groups. Pro-inflammatory chemokines and the complement system appeared to greatly contribute to the pathogenesis and development of severe COVID-19. Higher concentrations of CXCL8 and CCL2 in the plasma, with reduced mRNA expression presumably through negative feedback mechanisms, as well as CMV-positive status, correlated with more severe courses of COVID-19. Therefore, CXCL8, CCL2, and CMV seropositivity should be considered as new prognostic factors for severe COVID-19 courses. However, more in-depth research is needed
    corecore