52,677 research outputs found
Single fermion manipulation via superconducting phase differences in multiterminal Josephson junctions
We show how the superconducting phase difference in a Josephson junction may
be used to split the Kramers degeneracy of its energy levels and to remove all
the properties associated with time reversal symmetry. The superconducting
phase difference is known to be ineffective in two-terminal short Josephson
junctions, where irrespective of the junction structure the induced Kramers
degeneracy splitting is suppressed and the ground state fermion parity must
stay even, so that a protected zero-energy Andreev level crossing may never
appear. Our main result is that these limitations can be completely avoided by
using multi-terminal Josephson junctions. There the Kramers degeneracy breaking
becomes comparable to the superconducting gap, and applying phase differences
may cause the change of the ground state fermion parity from even to odd. We
prove that the necessary condition for the appearance of a fermion parity
switch is the presence of a "discrete vortex" in the junction: the situation
when the phases of the superconducting leads wind by . Our approach
offers new strategies for creation of Majorana bound states as well as spin
manipulation. Our proposal can be implemented using any low density, high
spin-orbit material such as InAs quantum wells, and can be detected using
standard tools.Comment: Source code available as ancillary files. 10 pages, 7 figures. v2:
minor changes, published versio
Characterization of the residual stresses in spray-formed steels using neutron diffraction
Neutron diffraction was used to characterize the residual stresses in an as-sprayed tube-shaped steel preform. The measured residual stress distributions were compared with those simulated using finite element method by taking into account the effects of the thermal history, porosity and different phases of the sprayed preform. The porosity was measured using X-ray microcomputed tomography. The study revealed for the first time the correlation between the distribution of porosity and residual stress developed in the as-sprayed preform
Recommended from our members
Long-term stability studies of a semiconductor photoelectrode in three-electrode configuration
Improving the stability of semiconductor materials is one of the major challenges for sustainable and economic photoelectrochemical water splitting. N-terminated GaN nanostructures have emerged as a practical protective layer for conventional high efficiency but unstable Si and III-V photoelectrodes due to their near-perfect conduction band-alignment, which enables efficient extraction of photo-generated electrons, and N-terminated surfaces, which protects against chemical and photo-corrosion. Here, we demonstrate that Pt-decorated GaN nanostructures on an n+-p Si photocathode can exhibit an ultrahigh stability of 3000 h (i.e., over 500 days for usable sunlight ∼5.5 h per day) at a large photocurrent density (>35 mA cm-2) in three-electrode configuration under AM 1.5G one-sun illumination. The measured applied bias photon-to-current efficiency of 11.9%, with an excellent onset potential of ∼0.56 V vs. RHE, is one of the highest values reported for a Si photocathode under AM 1.5G one-sun illumination. This study provides a paradigm shift for the design and development of semiconductor photoelectrodes for PEC water splitting: stability is no longer limited by the light absorber, but rather by co-catalyst particles
Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests
Setting aside overmature planted forests is currently seen as an option for preserving species associated with old-growth forests, such as those with dispersal limitation. Few data exist, however, on the utility of set-aside plantations for this purpose, or the value of this habitat type for biodiversity relative to old-growth semi-natural ecosystems. Here, we evaluate the contribution of forest type relative to habitat characteristics in determining species richness and composition in seven forest blocks, each containing an ancient old-growth stand (> 1000 yrs) paired with a set-aside even-aged planted stand (ca. 180 yrs). We investigated the functionally important yet relatively neglected ectomycorrhizal fungi (EMF), a group for which the importance of forest age has not been assessed in broadleaved forests. We found that forest type was not an important determinant of EMF species richness or composition, demonstrating that set-aside can be an effective option for conserving ancient EMF communities. Species richness of above-ground EMF fruiting bodies was principally related to the basal area of the stand (a correlate of canopy cover) and tree species diversity, whilst richness of below-ground ectomycorrhizae was driven only by tree diversity. Our results suggest that overmature planted forest stands, particularly those that are mixed-woods with high basal area, are an effective means to connect and expand ecological networks of ancient old-growth forests in historically deforested and fragmented landscapes for ectomycorrhizal fungi
- …