4 research outputs found
Potential clinical role of telomere length in human glioblastoma
Glioblastoma Multiforme (GBM) is the most common and lethal of human primary central nervous system (CNS) tumors. Due to the tumour’s intrinsic clinical and molecular heterogeneity, choice of initial treatment, prediction of survival, stratification of patients, prediction and monitoring of response to therapy, represent some of the greatest challenges in the management of GBM patients. Patients, despite optimal surgery, radiation and chemotherapy, still have a median survival of 14-16 months. A reason for this dismal prognosis is because of the relative inaccuracy of current prognostic markers, so far based on clinical or pathological variables. Molecular markers that effectively predict response to therapy and survival outcomes are limited. Consequently, there is a strong need to develop novel and independent markers of prognosis. Ideal biomarkers for solid tumors would serve one or more important functions. Telomeres, guanine-rich tandem DNA repeats of the chromosomal end, provide chromosomal stability, regulates important cellular processes, and seem to be implicated in human carcinogenesis. Recently, telomeres have been shown either to be associated with clinical markers of disease progression or to be independent markers of cancer prognosis in solid tumours, including GBM. Nevertheless, a corresponding comprehensive discussion of these promising developments in brain tumours has not yet been available in the literature. Therefore, here we reviewed studies focused on the assessment of telomeric length in brain tumours with the aim to emphasized those findings indicating a potential clinical role of telomeres in GBM. With the aim to enhance the awareness of the potential clinical role of telomeres’ length information in GBM, using a southern blot analysis, telomeric length in excised tumour samples was analyzed. Moreover, an attempt to correlated telomere length with patients’ overall survival, was also performed. The findings here reviewed shows some contradictory results, due to different tissues used as controls, but mainly to cellular and molecular heterogeneity in GBMs that drive molecular mechanisms controlling telomere length, included telomerase and Alternative Lengthening of Telomeres (ALT), through multiple mechanisms. However, overall these studies, including our own, are consistent with the hypothesis that GBMs’ telomeres were always shorter when compared with Normal Brain Tissue (NBT), and together with higher telomerase activity seem to be associated with malignancy and poor outcome; while tumours with ALT phenotype have longer telomeres, “less malignant” behaviour and better prognosis. We conclude that, although not entirely consistent in the type of telomere alteration, i.e., attrition vs. elongation, and unclear on the underlying mechanisms, multiple studies in brain tumours have shown that
Translational Medicine @ UniSa, - ISSN 2239-9747 2011, 1(1): 243-270
245
UniversitĂ degli Studi di Salerno
telomere dysfunctions are associated with parameters of clinical outcome in patients with GBMs and therefore will be part of novel risk assessment and prognostic modalities for patients with these still dismal disease
Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment
VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved residues within the C terminus of the VAMP2 SNARE motif. Affected individuals carrying de novo non-synonymous variants involving the C-terminal region presented a more severe phenotype with additional neurological features, including central visual impairment, hyperkinetic movement disorder, and epilepsy or electroencephalography abnormalities. Reconstituted fusion involving a lipid-mixing assay indicated impairment in vesicle fusion as one of the possible associated disease mechanisms. The genetic synaptopathy caused by VAMP2 de novo mutations highlights the key roles of this gene in human brain development and function
A homozygous MED11 C-terminal variant causes a lethal neurodegenerative disease
The mediator (MED) multisubunit-complex modulates the activity of the transcriptional machinery, and genetic defects in different MED subunits (17, 20, 27) have been implicated in neurologic diseases. In this study, we identified a recurrent homozygous variant in MED11 (c.325C>T; p.Arg109Ter) in 7 affected individuals from 5 unrelated families
Bi-allelic genetic variants in the translational GTPases GTPBP1 and GTPBP2 cause a distinct identical neurodevelopmental syndrome
The homologous genes GTPBP1 and GTPBP2 encode GTP-binding proteins 1 and 2, which are involved in ribosomal homeostasis. Pathogenic variants in GTPBP2 were recently shown to be an ultra -rare cause of neurodegenerative or neurodevelopmental disorders (NDDs). Until now, no human phenotype has been linked to GTPBP1. Here, we describe individuals carrying bi-allelic GTPBP1 variants that display an identical phenotype with GTPBP2 and characterize the overall spectrum of GTP-binding protein (1/2) -related disorders. In this study, 20 individuals from 16 families with distinct NDDs and syndromic facial features were investigated by whole-exome (WES) or whole-genome (WGS) sequencing. To assess the functional impact of the identified genetic variants, semi -quantitative PCR, western blot, and ribosome profiling assays were performed in fibroblasts from affected individuals. We also investigated the effect of reducing expression of CG2017, an ortholog of human GTPBP1/2, in the fruit fly Drosophila melanogaster. Individuals with bi-allelic GTPBP1 or GTPBP2 variants presented with microcephaly, profound neurodevelopmental impairment, pathognomonic craniofacial features, and ectodermal defects. Abnormal vision and/or hearing, progressive spasticity, choreoathetoid movements, refractory epilepsy, and brain atrophy were part of the core phenotype of this syndrome. Cell line studies identified a loss -of -function (LoF) impact of the disease -associated variants but no significant abnormalities on ribosome profiling. Reduced expression of CG2017 isoforms was associated with locomotor impairment in Drosophila. In conclusion, bi-allelic GTPBP1 and GTPBP2 LoF variants cause an identical, distinct neurodevelopmental syndrome. Mutant CG2017 knockout flies display motor impairment, highlighting the conserved role for GTPbinding proteins in CNS development across species