1,285 research outputs found

    Comb entanglement in quantum spin chains

    Full text link
    Bipartite entanglement in the ground state of a chain of NN quantum spins can be quantified either by computing pairwise concurrence or by dividing the chain into two complementary subsystems. In the latter case the smaller subsystem is usually a single spin or a block of adjacent spins and the entanglement differentiates between critical and non-critical regimes. Here we extend this approach by considering a more general setting: our smaller subsystem SAS_A consists of a {\it comb} of LL spins, spaced pp sites apart. Our results are thus not restricted to a simple `area law', but contain non-local information, parameterized by the spacing pp. For the XX model we calculate the von-Neumann entropy analytically when N→∞N\to \infty and investigate its dependence on LL and pp. We find that an external magnetic field induces an unexpected length scale for entanglement in this case.Comment: 6 pages, 4 figure

    On relations between one-dimensional quantum and two-dimensional classical spin systems

    Get PDF
    We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri, arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki mapping; the method of coherent states; and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in our previous article for the classical systems identified.Comment: 36 page

    Relaxation due to random collisions with a many-qudit environment

    Get PDF
    We analyze the dynamics of a system qudit of dimension mu sequentially interacting with the nu-dimensional qudits of a chain playing the ore of an environment. Each pairwise collision has been modeled as a random unitary transformation. The relaxation to equilibrium of the purity of the system qudit, averaged over random collisions, is analytically computed by means of a Markov chain approach. In particular, we show that the steady state is the one corresponding to the steady state for random collisions with a single environment qudit of effective dimension nu_e=nu*mu. Finally, we numerically investigate aspects of the entanglement dynamics for qubits (mu=nu=2) and show that random unitary collisions can create multipartite entanglement between the system qudit and the qudits of the chain.Comment: 7 pages, 6 figure

    Evolution of magneto-orbital order upon B-site electron doping in Na1-xCaxMn7O12 quadruple perovskite manganites

    Full text link
    We present the discovery and refinement by neutron powder diffraction of a new magnetic phase in the Na1-xCaxMn7O12 quadruple perovskite phase diagram, which is the incommensurate analogue of the well-known pseudo-CE phase of the simple perovskite manganites. We demonstrate that incommensurate magnetic order arises in quadruple perovskites due to the exchange interactions between A and B sites. Furthermore, by constructing a simple mean field Heisenberg exchange model that generically describes both simple and quadruple perovskite systems, we show that this new magnetic phase unifies a picture of the interplay between charge, magnetic and orbital ordering across a wide range of compounds.Comment: Accepted for publication in Physical Review Letter

    A new correlator in quantum spin chains

    Full text link
    We propose a new correlator in one-dimensional quantum spin chains, the s−s-Emptiness Formation Probability (s−s-EFP). This is a natural generalization of the Emptiness Formation Probability (EFP), which is the probability that the first nn spins of the chain are all aligned downwards. In the s−s-EFP we let the spins in question be separated by ss sites. The usual EFP corresponds to the special case when s=1s=1, and taking s>1s>1 allows us to quantify non-local correlations. We express the s−s-EFP for the anisotropic XY model in a transverse magnetic field, a system with both critical and non-critical regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find that the magnetic field induces an interesting length scale.Comment: 6 pages, 1 figur

    Optical study of the vibrational and dielectric properties of BiMnO3

    Full text link
    BiMnO3 (BMO), ferromagnetic (FM) below Tc = 100 K, was believed to be also ferroelectric (FE) due to a non-centro-symmetric C2 structure, until diffraction data indicated that its space group is the centro-symmetric C2/c. Here we present infrared phonon spectra of BMO, taken on a mosaic of single crystals, which are consistent with C2/c at any T > 10 K, as well as room-temperature Raman data which strongly support this conclusion. We also find that the infrared intensity of several phonons increases steadily for decreasing T, causing the relative permittivity of BMO to vary from 18.5 at 300 K to 45 at 10 K. At variance with FE materials of displacive type, no appreciable softening has been found in the infrared phonons. Both their frequencies and intensities, moreover, appear insensitive to the FM transition at Tc

    On the moments of characteric polynomials

    Get PDF

    A spin-glass model for the loss surfaces of generative adversarial networks

    Get PDF
    We present a novel mathematical model that seeks to capture the key design feature of generative adversarial networks (GANs). Our model consists of two interacting spin glasses, and we conduct an extensive theoretical analysis of the complexity of the model's critical points using techniques from Random Matrix Theory. The result is insights into the loss surfaces of large GANs that build upon prior insights for simpler networks, but also reveal new structure unique to this setting.Comment: 26 pages, 9 figure

    Entanglement in Quantum Spin Chains, Symmetry Classes of Random Matrices, and Conformal Field Theory

    Full text link
    We compute the entropy of entanglement between the first NN spins and the rest of the system in the ground states of a general class of quantum spin-chains. We show that under certain conditions the entropy can be expressed in terms of averages over ensembles of random matrices. These averages can be evaluated, allowing us to prove that at critical points the entropy grows like Îșlog⁥2N+Îș~\kappa\log_2 N + {\tilde \kappa} as N→∞N\to\infty, where Îș\kappa and Îș~{\tilde \kappa} are determined explicitly. In an important class of systems, Îș\kappa is equal to one-third of the central charge of an associated Virasoro algebra. Our expression for Îș\kappa therefore provides an explicit formula for the central charge.Comment: 4 page
    • 

    corecore