309 research outputs found

    Two-dimensional discrete solitons in dipolar Bose-Einstein condensates

    Full text link
    We analyze the formation and dynamics of bright unstaggered solitons in the disk-shaped dipolar Bose-Einstein condensate, which features the interplay of contact (collisional) and long-range dipole-dipole (DD) interactions between atoms. The condensate is assumed to be trapped in a strong optical-lattice potential in the disk's plane, hence it may be approximated by a two-dimensional (2D) discrete model, which includes the on-site nonlinearity and cubic long-range (DD) interactions between sites of the lattice. We consider two such models, that differ by the form of the on-site nonlinearity, represented by the usual cubic term, or more accurate nonpolynomial one, derived from the underlying 3D Gross-Pitaevskii equation. Similar results are obtained for both models. The analysis is focused on effects of the DD interaction on fundamental localized modes in the lattice (2D discrete solitons). The repulsive isotropic DD nonlinearity extends the existence and stability regions of the fundamental solitons. New families of on-site, inter-site and hybrid solitons, built on top of a finite background, are found as a result of the interplay of the isotropic repulsive DD interaction and attractive contact nonlinearity. By themselves, these solutions are unstable, but they evolve into robust breathers which exist on an oscillating background. In the presence of the repulsive contact interactions, fundamental localized modes exist if the DD interaction (attractive isotropic or anisotropic) is strong enough. They are stable in narrow regions close to the anticontinuum limit, while unstable solitons evolve into breathers. In the latter case, the presence of the background is immaterial

    Relativistic electrons from sparks in the laboratory

    Get PDF
    Discharge experiments were carried out at the Eindhoven University of Technology in 2013. The experimental setup was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the high voltage (HV) electrode. Five thin (1 mm) plastic detectors (5 cm2\rm cm^2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers is developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated at this location, that could be in the strong electric field from counterstreamers of opposite polarity. Comparing our measurements with modeling results, we find that \sim300 keV electrons produced about 30-60 cm from the negative electrode are the most likely source of our measurements. A statistical analysis of expected detection of photon bursts by these fiber detectors indicates that only 20%-45% of the detected bursts could be from soft (\sim10 keV) photons, which further supports that the majority of detected bursts are produced by relativistic electrons

    Discrete soliton mobility in two-dimensional waveguide arrays with saturable nonlinearity

    Full text link
    We address the issue of mobility of localized modes in two-dimensional nonlinear Schr\"odinger lattices with saturable nonlinearity. This describes e.g. discrete spatial solitons in a tight-binding approximation of two-dimensional optical waveguide arrays made from photorefractive crystals. We discuss numerically obtained exact stationary solutions and their stability, focussing on three different solution families with peaks at one, two, and four neighboring sites, respectively. When varying the power, there is a repeated exchange of stability between these three solutions, with symmetry-broken families of connecting intermediate stationary solutions appearing at the bifurcation points. When the nonlinearity parameter is not too large, we observe good mobility, and a well defined Peierls-Nabarro barrier measuring the minimum energy necessary for rendering a stable stationary solution mobile.Comment: 19 pages, 4 figure

    Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters

    Get PDF
    We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non- or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet's upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet (EUV) radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photo-ionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to ~0.5-1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10-20% that of Jupiter.Comment: 8 pages, 6 figures, 2 tables, accepted to MNRA
    corecore