270 research outputs found

    The resolved structure of the extragalactic supernova remnant SNR 4449-1

    Get PDF
    We present very long baseline interferometry (VLBI) observations of the milliarcsecond-scale radio structure of the supernova remnant SNR 4449-1 in the galaxy NGC 4449. This young and superluminous remnant was observed at 1.6 GHz (λ=18\lambda = 18\,cm) with the European VLBI Network. The observations confirm earlier identifications of this object with a supernova remnant (SNR) while revealing a somewhat different morphology compared with the structure reported by Bietenholz et al. from VLBI observations at 1.4 GHz. This difference is discussed here in the context of structural sensitivity of both observations. The 1.6 GHz image yields accurate estimates of the size (0.0422 arcsec ×\times 0.0285 arcsec and 0.8 ×\times 0.5 pc) and age (\sim55 yr) of SNR 4449-1. With a total flux of 6.1 ±\pm 0.6 mJy measured in the VLBI image, the historical lightcurve of the source can be well represented by a power-law decay with a power index of -1.19 ±\pm 0.07. The SNR exhibits a decline rate of the radio emission of 2.2% ±\pm 0.1% yr1^{-1} and a radio luminosity of 1.74 ×\times 1035^{35} erg s1^{-1}.Comment: 7 pages, 6 figures, MNRAS preprint, arXiv:1309.401

    The central parsecs of active galactic nuclei: challenges to the torus

    Full text link
    Type 2 AGN are by definition nuclei in which the broad-line region and continuum light are hidden at optical/UV wavelengths by dust. Via accurate registration of infrared (IR) Very Large Telescope adaptive optics images with optical \textit{Hubble Space Telescope} images we unambiguously identify the precise location of the nucleus of a sample of nearby, type 2 AGN. Dust extinction maps of the central few kpc of these galaxies are constructed from optical-IR colour images, which allow tracing the dust morphology at scales of few pc. In almost all cases, the IR nucleus is shifted by several tens of pc from the optical peak and its location is behind a dust filament, prompting to this being a major, if not the only, cause of the nucleus obscuration. These nuclear dust lanes have extinctions AV36A_V \geq 3-6 mag, sufficient to at least hide the low-luminosity AGN class, and in some cases are observed to connect with kpc-scale dust structures, suggesting that these are the nuclear fueling channels. A precise location of the ionised gas Hα\alpha and [\textsc{Si\,vii}] 2.48 μ\mum coronal emission lines relative to those of the IR nucleus and dust is determined. The Hα\alpha peak emission is often shifted from the nucleus location and its sometimes conical morphology appears not to be caused by a nuclear --torus-- collimation but to be strictly defined by the morphology of the nuclear dust lanes. Conversely, [\textsc{Si\,vii}] 2.48 μ\mum emission, less subjected to dust extinction, reflects the truly, rather isotropic, distribution of the ionised gas. All together, the precise location of the dust, ionised gas and nucleus is found compelling enough to cast doubts on the universality of the pc-scale torus and supports its vanishing in low-luminosity AGN. Finally, we provide the most accurate position of the NGC 1068 nucleus, located at the South vertex of cloud B.Comment: 23 pages, 10 figures, accepted for publication in MNRA

    A population of intermediate-mass black holes in dwarf starburst galaxies up to redshift=1.5

    Get PDF
    We study a sample of \sim50,000 dwarf starburst and late-type galaxies drawn from the COSMOS survey with the aim of investigating the presence of nuclear accreting black holes (BHs) as those seed BHs from which supermassive BHs could grow in the early Universe. We divide the sample into five complete redshift bins up to z=1.5z=1.5 and perform an X-ray stacking analysis using the \textit{Chandra} COSMOS-Legacy survey data. After removing the contribution from X-ray binaries and hot gas to the stacked X-ray emission, we still find an X-ray excess in the five redshift bins that can be explained by nuclear accreting BHs. This X-ray excess is more significant for z<0.5z<0.5. At higher redshifts, these active galactic nuclei could suffer mild obscuration, as indicated by the analysis of their hardness ratios. The average nuclear X-ray luminosities in the soft band are in the range 10391040^{39}-10^{40} erg s1^{-1}. Assuming that the sources accrete at \geq 1\% the Eddington rate, their BH masses would be \leq 105^{5} M_{\odot}, thus in the intermediate-mass BH regime, but their mass would be smaller than the one predicted by the BH-stellar mass relation. If instead the sources follow the correlation between BH mass and stellar mass, they would have sub-Eddington accreting rates of \sim 103^{-3} and BH masses 1-9 ×\times 105^{5} M_{\odot}. We thus conclude that a population of intermediate-mass BHs exists in dwarf starburst galaxies, at least up to zz=1.5, though their detection beyond the local Universe is challenging due to their low luminosity and mild obscuration unless deep surveys are employed.Comment: 10 pages, 7 figures, ApJ in pres

    Intermediate-mass black holes in dwarf galaxies out to redshift \sim 2.4 in the Chandra COSMOS Legacy Survey

    Full text link
    We present a sample of 40 AGN in dwarf galaxies at redshifts zz \lesssim 2.4. The galaxies are drawn from the \textit{Chandra} COSMOS-Legacy survey as having stellar masses 107M3×10910^{7}\leq M_{*}\leq3 \times 10^{9} M_{\odot}. Most of the dwarf galaxies are star-forming. After removing the contribution from star formation to the X-ray emission, the AGN luminosities of the 40 dwarf galaxies are in the range L0.510keV10391044L_\mathrm{0.5-10 keV} \sim10^{39} - 10^{44} erg s1^{-1}. With 12 sources at z>0.5z > 0.5, our sample constitutes the highest-redshift discovery of AGN in dwarf galaxies. The record-holder is cid\_1192, at z=2.39z = 2.39 and with L0.510keV1044L_\mathrm{0.5-10 keV} \sim 10^{44} erg s1^{-1}. One of the dwarf galaxies has M=6.6×107M_\mathrm{*} = 6.6 \times 10^{7} M_{\odot} and is the least massive galaxy found so far to host an AGN. All the AGN are of type 2 and consistent with hosting intermediate-mass black holes (BHs) with masses 104105\sim 10^{4} - 10^{5} M_{\odot} and typical Eddington ratios >1%> 1\%. We also study the evolution, corrected for completeness, of AGN fraction with stellar mass, X-ray luminosity, and redshift in dwarf galaxies out to zz = 0.7. We find that the AGN fraction for 109<M3×10910^{9}< M_{*}\leq3 \times 10^{9} M_{\odot} and LX10411042L_\mathrm{X} \sim 10^{41}-10^{42} erg s1^{-1} is \sim0.4\% for zz \leq 0.3 and that it decreases with X-ray luminosity and decreasing stellar mass. Unlike massive galaxies, the AGN fraction seems to decrease with redshift, suggesting that AGN in dwarf galaxies evolve differently than those in high-mass galaxies. Mindful of potential caveats, the results seem to favor a direct collapse formation mechanism for the seed BHs in the early Universe.Comment: 16 pages, 10 figures, accepted for publication in MNRA

    The central molecular gas structure in LINERs with low luminosity AGN: evidence for gradual disappearance of the torus

    Get PDF
    We present observations of the molecular gas in the nuclear environment of three prototypical low luminosity AGN (LLAGN), based on VLT/SINFONI AO-assisted integral-field spectroscopy of H2 1-0 S(1) emission at angular resolutions of ~0.17". On scales of 50-150 pc the spatial distribution and kinematics of the molecular gas are consistent with a rotating thin disk, where the ratio of rotation (V) to dispersion (sigma) exceeds unity. However, in the central 50 pc, the observations reveal a geometrically and optically thick structure of molecular gas (V/sigma10^{23} cm^{-2}) that is likely to be associated with the outer extent of any smaller scale obscuring structure. In contrast to Seyfert galaxies, the molecular gas in LLAGN has a V/sigma<1 over an area that is ~9 times smaller and column densities that are in average ~3 times smaller. We interpret these results as evidence for a gradual disappearance of the nuclear obscuring structure. While a disk wind may not be able to maintain a thick rotating structure at these luminosities, inflow of material into the nuclear region could provide sufficient energy to sustain it. In this context, LLAGN may represent the final phase of accretion in current theories of torus evolution. While the inflow rate is considerable during the Seyfert phase, it is slowly decreasing, and the collisional disk is gradually transitioning to become geometrically thin. Furthermore, the nuclear region of these LLAGN is dominated by intermediate-age/old stellar populations (with little or no on-going star formation), consistent with a late stage of evolution.Comment: 15 pages, including 4 figures and 1 table, Accepted for publication in ApJ Letter

    Starbursts and black hole masses in X-shaped radio galaxies: Signatures of a merger event?

    Full text link
    We present new spectroscopic identifications of 12 X-shaped radio galaxies and use the spectral data to derive starburst histories and masses of the nuclear supermassive black holes in these galaxies. The observations were done with the 2.1-m telescope of the Observatorio Astron\'omico Nacional at San Pedro M\'artir, M\'exico. The new spectroscopic results extend the sample of X-shaped radio galaxies studied with optical spectroscopy. We show that the combined sample of the X-shaped radio galaxies has statistically higher black-hole masses and older episodes of star formation than a control sample of canonical double-lobed radio sources with similar redshifts and luminosities. The data reveal enhanced star-formation activity in the X-shaped sample on the timescales expected in galactic mergers. We discuss the results obtained in the framework of the merger scenario.Comment: 9 pages, 10 figures, accepted for publication in Astronomy & Astrophysic

    The environment of AGN dwarf galaxies at z\sim0.7 from the VIPERS survey

    Full text link
    Dwarf galaxies are ideal laboratories to study the relationship between the environment and AGN activity. However, the type of environments in which dwarf galaxies hosting AGN reside is still unclear and limited to low-redshift studies (z < 0.5). We use the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate, for the first time, their environments at 0.5 < z < 0.9. We select a sample of 12,942 low-mass (log(M/M)10\rm{log}(M_\mathrm{*}/M_{\odot})\leq10) galaxies and use the emission-line diagnostic diagram to identify AGN. We characterise their local environments as the galaxy density contrast, δ\delta, derived from the fifth nearest neighbour method. Our work demonstrates that AGN and non-AGN dwarf galaxies reside in similar environments at intermediate redshift suggesting that the environment is not an important factor in triggering AGN activity already since z = 0.9. Dwarf galaxies show a strong preference for low-density environments, independently of whether they host an AGN or not. Their properties do not change when moving to denser environments, suggesting that dwarf galaxies are not gas-enriched due to environmental effects. Moreover, AGN presence does not alter host properties supporting the scenario that AGN feedback does not impact the star formation of the host. Lastly, AGN are found to host over-massive black holes. This is the first study of dwarf galaxies hosting AGN at z > 0.5. The next generation of deep surveys will reveal whether or not such lack of environmental trends is common also for faint higher-redshift dwarf galaxy populations.Comment: Accepted for publication in MNRAS, 19 pages, 14 figure
    corecore