2 research outputs found

    Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    Get PDF
    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E > = 6×1019 eV by analyzing cosmic rays with energies above E > = 5×1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources

    Dopamine D2-receptor activation differentially inhibits N- and R-type Ca2+ channels in Xenopus melanotrope cells.

    No full text
    Contains fulltext : 57824.pdf (publisher's version ) (Closed access)Dopamine inhibits pituitary melanotrope cells of the amphibian Xenopus laevis through activation of a dopamine (D2) receptor that couples to a Gi protein. Activated Gi protein subunits are known to affect voltage-operated Ca2+ currents (ICa). In the present study we investigated which Ca2+ currents are regulated by D2-receptor activation and which Gi protein subunits are involved. Whole-cell voltage-clamp patch-clamp experiments from holding potentials (HPs) of -80 and -30 mV show that 28.6 and 36.9%, respectively, of the total ICa was inhibited by apomorphin, a D2-receptor agonist. The inhibited current had fast activation and inactivation kinetics. From an HP of -80 mV, inhibition of N-type Ca2+ currents with omega-conotoxin GVIA and R-type current by SNX-482 reduced the efficacy of the apomorphin-induced inhibition. From an HP of -30 mV this reduction for omega-conotoxin GVIA was still observed. Blocking L-type current by nifedipine or P/Q-type current by omega-agatoxin IVA did not affect apomorphin-induced inhibition at either HP. Our results imply that D2-receptor activation inhibits both N- and R-type Ca2+ currents. Using a strong depolarizing pre-pulse partially reversed the inhibition of the total current by apomorphin. About 50% of this inhibition was achieved through interaction of Gbeta/gamma proteins, and this part of the inhibited ICa had fast activating and inactivating kinetics. However, the other part of the current inhibited by D2-receptor activation may proceed through Galpha-PKA phosphorylation
    corecore