100 research outputs found

    Non-contrast-enhanced MR angiography using time-spin labelling inversion pulse technique for detecting crossing renal vessels in children with symptomatic ureteropelvic junction obstruction: comparison with surgical findings.

    Get PDF
    OBJECTIVES: Investigate the feasibility and evaluate the accuracy of non-contrast-enhanced MR angiography (NC-MRA) using time-spin labelling inversion pulse (time-SLIP)to identify crossing renal vessels (CRVs) in children requiring surgical treatment of ureteropelvic junction (UPJ) obstructionand compare to laparoscopic findings. MATERIALS AND METHODS: Nineteen children ranging from 6 to 16 years of age underwent NC-MRA using the time-SLIP technique before surgery. Two independent readers analysed the MRA images. Number of renal arteries and presence or absence of CRVs were identified and compared with surgicalfindings. Image quality was assessed, as well as the presence of CRVs and measurement of renal pelvis diameter. Intra and inter-reader agreement was calculated using Cohen's kappa coefficient and Bland-Altman plots. RESULTS: The overall image quality was fair or good in 88% of cases. NC-MRA demonstrated CRVs at the level of the obstruction in 10 children and no CRV in 9 children. All were confirmed intra-operatively except in one of the nine children. Sensitivity, specificity, NPV, PPV for predicting CRVs were 92%, 100%, 100% and 87.5%, respectively, for both readers. CONCLUSION: NC-MRA is a good alternative to contrast-enhanced MRA and CT scanning for identifying CRVs in children with symptomatic UPJ. KEY POINTS: • Time-SLIP technique offers acceptable imaging quality for identifying crossing renal vessel. • Time-SLIP technique is easy to apply to the renal MRA examination. • Time-SLIP technique is an alternative to contrast-enhanced MRA and CT scanning

    US-guided Percutaneous Release of the Trigger Finger by Using a 21-gauge Needle: A Prospective Study of 60 Cases.

    Get PDF
    Purpose: To evaluate the efficacy of ultrasonographically (US)-guided percutaneous treatment of the trigger finger by releasing the A1 pulley with a 21-gauge needle. Materials and Methods : This two-part study was approved by the ethics committee, and written consent was obtained from all patients. The first part consisted of 10 procedures on cadaver digits followed by dissection to analyze the effectiveness of the A1 pulley release and detect any collateral damage to the A2 pulley, interdigital nerves, or underlying flexor tendons. The second part was performed during an 18-month period starting in March 2013. It was a prospective clinical study of 60 procedures performed in 48 patients. Outcomes were evaluated through a clinical examination at day 0 and during a 6-month follow-up visit, where the trigger digit was evaluated clinically and the Quick Disabilities of the Arm, Shoulder and Hand outcome measure, or QuickDASH, and patient satisfaction questionnaires were administered. Results : No complications were found during the cadaver study. However, the release was considered "partial" in all fingers. In the clinical study, the trigger finger was completely resolved in 81.7% (49 of 60) of cases immediately after the procedure. Moderate trigger finger persisted in 10 cases, and one thumb pulley could not be released. A US-guided corticosteroid injection was subsequently performed in these 11 cases. At 6-month follow-up, only two cases still had moderate trigger finger and there were no late complications. The mean QuickDASH questionnaire score was 4; all patients said they were satisfied. Conclusion : US-guided treatment of the trigger finger by using a 21-gauge needle is feasible in current practice, with minimal complications

    Etude de l'hémodynamique des fluides portaux et systémiques grâce à la mécanique des fluides numérique

    No full text
    Le travail de thèse est en trois parties. La première partie du travail porte sur la comparaison des données de simulation MFN issues du solveur Yales2bio aux résultats de mesure des séquences d'IRM 4D. Notre modèle de MFN exploitait les données morphologiques de l'IRM 3D pour la modélisation géométrique et les données vélocimétriques des séquences d'IRM à contraste de phase 2D (PC-MRI) pour définir les conditions limites de la modélisation. Nous avons comparé les distributions spatiales et les valeurs locales des vitesses obtenues avec ces deux méthodes de mesure. En outre, nous avons évalué l'influence de la résolution de la modélisation géométrique sur la simulation de la vitesse. Nous avons remarqué un accord qualitatif et quantitatif avec un haut niveau de corrélation entre données IRM et MFN. La seconde partie traite d'hypertension portale. Nous avons pu au cours de ce travail, mettre au point un protocole optimisé pour les mesures de débit azygos dans le cadre d'un travail préparatoire pour une étude clinique. De plus nous avons mis au point un modèle basé sur la MFN d'hypertension portale in silico, rendant compte de la montée des pressions lors de l'accroissement de la résistance intra hépatique. Enfin dans la troisième partie, on a utilisé la MFN pour trouver des nouveaux facteurs pronostiques de l'évolution des petits anévrismes de l'aorte abdominale (AAA). Pour ce travail, nous avons utilisé les données issues d'une étude multicentrique et prospective. Nous avons inclus 78 patients porteurs AAA de septembre 2012 à juin 2014. Les patients avaient bénéficié deux examens CT séparés d'un intervalle d'un an pour évaluer la croissance des anévrismes. Cinquante patients de ces patients étaient admissibles à une analyse basée sur la MFN. Sur la base d'un seuil de 10 ml de croissance totale du volume, nous avons classé les 50 patients en deux groupes dits de croissance lente et de croissance rapide. Les paramètres morphologiques et fonctionnels initiaux des anévrismes ont été analysés, comprenant : le diamètre maximal, la surface de section maximale, les volumes du thrombus et de lumière, la pression maximale exercée sur la paroi et les forces de cisaillement de la paroi (WSS). Il y avait une différence significative entre les deux groupes concernant le volume de la lumière de l'anévrisme (P = 0,0051) et la variation moyenne du WSS (P = 0,0240) contrairement au diamètre maximal (P = 0,71). Nous avons trouvé une corrélation significative de la croissance du volume d'anévrisme avec le volume de la lumière et la réduction de la valeur de variation moyenne de WSS (respectivement R = 0,47, P = 0,0015 et R = -0,42, P = 0,0062) et la croissance totale du volume d'anévrisme. En combinant ces paramètres, nous avons mis au point un modèle de prédiction de la croissance rapide des AAA qui présentait une meilleure aire sous la courbe ROC que la seule mesure de diamètre maximal (0,78 vs 0,52, P = 0,0031). En fonction du seuil utilisé, notre modèle donne soit une excellente sensibilité (95,0% [IC95% 75,1, 99,9]), soit une spécificité (90,0% [IC95% 73,5, 97,9]). Nous avons pu démontrer que l'analyse combinée du volume de la lumière et du WSS fournit une meilleure information que le diamètre maximal pour évaluer le risque de croissance rapide du volume des petits AAA.The thesis work is in three parts. The first part of the work concerns the comparison of the CFD simulation data from the Yales2bio solver to the measurement results of the 4D MRI sequences. Our CFD model exploited morphological data from 3D MRI for geometric modeling and velocimetry data of 2D phase contrast MRI (PC-MRI) sequences to define boundary conditions for modeling. We compared spatial distributions and local values ??of velocities obtained with these two methods of measurement. In addition, we evaluated the influence of geometric modeling resolution on velocity simulation. We noticed a qualitative and quantitative agreement with a high level of correlation between MRI and CFD data. The second part deals with portal hypertension. During this work, we have been able to develop an optimized protocol for azygous flow measurements as part of a preparatory work for a clinical study. In addition, we have developed a model based on the CFD of portal hypertension in silico, accounting for the increase of pressures during the increase of intrahepatic resistance. Finally, in the third part, CFD was used to find new prognostic factors for the evolution of small abdominal aortic aneurysms (AAA). For this work, we used data from a multicenter and prospective study. We included 78 AAA patients from September 2012 to June 2014. Patients had two separate CT examinations at one-year intervals to evaluate aneurysm growth. Fifty patients in these patients were eligible for CFD-based analysis. Based on a threshold of 10 ml of total volume growth, we classified the 50 patients into two so-called slow growth and fast growing groups. The initial morphological and functional parameters of the aneurysms were analyzed, including: maximum diameter, maximum section area, thrombus and lumen volumes, maximum wall pressure, and wall shear forces (WSS) . There was a significant difference between the two groups regarding aneurysmal lumen volume (P = 0.0051) and mean WSS variation (P = 0.0240) in contrast to maximal diameter (P = 0.71). ). We found a significant correlation of growth of aneurysm volume with volume of light and reduction of mean WSS (R = 0.47, P = 0.0015 and R = -0, respectively). 42, P = 0.0062) and total growth of aneurysm volume. Combining these parameters, we developed a prediction model for rapid AAA growth that had better area under the ROC curve than the single maximum diameter measure (0.78 vs. 0.52, P = 0.0031 ). Depending on the threshold used, our model gives either excellent sensitivity (95.0% [95% CI 75.1, 99.9]) or specificity (90.0% [95% CI 73.5, 97.9] ). We were able to demonstrate that the combined light volume and WSS analysis provides better information than the maximum diameter for assessing the risk of rapid AAA volume growth

    Study of the hemodynamics of portal and systemic fluids using computational fluid dynamics

    No full text
    Le travail de thèse est en trois parties. La première partie du travail porte sur la comparaison des données de simulation MFN issues du solveur Yales2bio aux résultats de mesure des séquences d'IRM 4D. Notre modèle de MFN exploitait les données morphologiques de l'IRM 3D pour la modélisation géométrique et les données vélocimétriques des séquences d'IRM à contraste de phase 2D (PC-MRI) pour définir les conditions limites de la modélisation. Nous avons comparé les distributions spatiales et les valeurs locales des vitesses obtenues avec ces deux méthodes de mesure. En outre, nous avons évalué l'influence de la résolution de la modélisation géométrique sur la simulation de la vitesse. Nous avons remarqué un accord qualitatif et quantitatif avec un haut niveau de corrélation entre données IRM et MFN. La seconde partie traite d'hypertension portale. Nous avons pu au cours de ce travail, mettre au point un protocole optimisé pour les mesures de débit azygos dans le cadre d'un travail préparatoire pour une étude clinique. De plus nous avons mis au point un modèle basé sur la MFN d'hypertension portale in silico, rendant compte de la montée des pressions lors de l'accroissement de la résistance intra hépatique. Enfin dans la troisième partie, on a utilisé la MFN pour trouver des nouveaux facteurs pronostiques de l'évolution des petits anévrismes de l'aorte abdominale (AAA). Pour ce travail, nous avons utilisé les données issues d'une étude multicentrique et prospective. Nous avons inclus 78 patients porteurs AAA de septembre 2012 à juin 2014. Les patients avaient bénéficié deux examens CT séparés d'un intervalle d'un an pour évaluer la croissance des anévrismes. Cinquante patients de ces patients étaient admissibles à une analyse basée sur la MFN. Sur la base d'un seuil de 10 ml de croissance totale du volume, nous avons classé les 50 patients en deux groupes dits de croissance lente et de croissance rapide. Les paramètres morphologiques et fonctionnels initiaux des anévrismes ont été analysés, comprenant : le diamètre maximal, la surface de section maximale, les volumes du thrombus et de lumière, la pression maximale exercée sur la paroi et les forces de cisaillement de la paroi (WSS). Il y avait une différence significative entre les deux groupes concernant le volume de la lumière de l'anévrisme (P = 0,0051) et la variation moyenne du WSS (P = 0,0240) contrairement au diamètre maximal (P = 0,71). Nous avons trouvé une corrélation significative de la croissance du volume d'anévrisme avec le volume de la lumière et la réduction de la valeur de variation moyenne de WSS (respectivement R = 0,47, P = 0,0015 et R = -0,42, P = 0,0062) et la croissance totale du volume d'anévrisme. En combinant ces paramètres, nous avons mis au point un modèle de prédiction de la croissance rapide des AAA qui présentait une meilleure aire sous la courbe ROC que la seule mesure de diamètre maximal (0,78 vs 0,52, P = 0,0031). En fonction du seuil utilisé, notre modèle donne soit une excellente sensibilité (95,0% [IC95% 75,1, 99,9]), soit une spécificité (90,0% [IC95% 73,5, 97,9]). Nous avons pu démontrer que l'analyse combinée du volume de la lumière et du WSS fournit une meilleure information que le diamètre maximal pour évaluer le risque de croissance rapide du volume des petits AAA.The thesis work is in three parts. The first part of the work concerns the comparison of the CFD simulation data from the Yales2bio solver to the measurement results of the 4D MRI sequences. Our CFD model exploited morphological data from 3D MRI for geometric modeling and velocimetry data of 2D phase contrast MRI (PC-MRI) sequences to define boundary conditions for modeling. We compared spatial distributions and local values ??of velocities obtained with these two methods of measurement. In addition, we evaluated the influence of geometric modeling resolution on velocity simulation. We noticed a qualitative and quantitative agreement with a high level of correlation between MRI and CFD data. The second part deals with portal hypertension. During this work, we have been able to develop an optimized protocol for azygous flow measurements as part of a preparatory work for a clinical study. In addition, we have developed a model based on the CFD of portal hypertension in silico, accounting for the increase of pressures during the increase of intrahepatic resistance. Finally, in the third part, CFD was used to find new prognostic factors for the evolution of small abdominal aortic aneurysms (AAA). For this work, we used data from a multicenter and prospective study. We included 78 AAA patients from September 2012 to June 2014. Patients had two separate CT examinations at one-year intervals to evaluate aneurysm growth. Fifty patients in these patients were eligible for CFD-based analysis. Based on a threshold of 10 ml of total volume growth, we classified the 50 patients into two so-called slow growth and fast growing groups. The initial morphological and functional parameters of the aneurysms were analyzed, including: maximum diameter, maximum section area, thrombus and lumen volumes, maximum wall pressure, and wall shear forces (WSS) . There was a significant difference between the two groups regarding aneurysmal lumen volume (P = 0.0051) and mean WSS variation (P = 0.0240) in contrast to maximal diameter (P = 0.71). ). We found a significant correlation of growth of aneurysm volume with volume of light and reduction of mean WSS (R = 0.47, P = 0.0015 and R = -0, respectively). 42, P = 0.0062) and total growth of aneurysm volume. Combining these parameters, we developed a prediction model for rapid AAA growth that had better area under the ROC curve than the single maximum diameter measure (0.78 vs. 0.52, P = 0.0031 ). Depending on the threshold used, our model gives either excellent sensitivity (95.0% [95% CI 75.1, 99.9]) or specificity (90.0% [95% CI 73.5, 97.9] ). We were able to demonstrate that the combined light volume and WSS analysis provides better information than the maximum diameter for assessing the risk of rapid AAA volume growth

    INTERET DE LA RADIOCHIMIOTHERAPIE CONCOMITANTE DANS LE TRAITEMENT DES TUMEURS DE VESSIE

    No full text
    PARIS-BIUM (751062103) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF
    corecore