1,155 research outputs found

    Stellar evolution with rotation X: Wolf-Rayet star populations at solar metallicity

    Full text link
    We examine the properties of Wolf--Rayet (WR) stars predicted by models of rotating stars taking account of the new mass loss rates for O--type stars and WR stars (Vink et al. \cite{Vink00}, \cite{Vink01}; Nugis & Lamers \cite{NuLa00}) and of the wind anisotropies induced by rotation. We find that the rotation velocities vv of WR stars are modest, i.e. about 50 km s−1^{-1}, not very dependant on the initial vv and masses. For the most massive stars, the evolution of vv is very strongly influenced by the values of the mass loss rates; below ∌\sim12 M⊙_\odot the evolution of rotation during the MS phase and later phases is dominated by the internal coupling. Massive stars with extreme rotation may skip the LBV phase. Models having a typical vv for the O--type stars have WR lifetimes on the average two times longer than for non--rotating models. The increase of the WR lifetimes is mainly due to that of the H--rich eWNL phase. Rotation allows a transition WN/WC phase to be present for initial masses lower than 60 M⊙_\odot. The durations of the other WR subphases are less affected by rotation. The mass threshold for forming WR stars is lowered from 37 to 22 M⊙_\odot for typical rotation. The comparisons of the predicted number ratios WR/O, WN/WC and of the number of transition WN/WC stars show very good agreement with models with rotation, while this is not the case for models with the present--day mass loss rates and no rotation. As to the chemical abundances in WR stars, rotation brings only very small changes for WN stars, since they have equilibrium CNO values. However, WC stars with rotation have on average lower C/He and O/He ratios. The luminosity distribution of WC stars is also influenced by rotation.Comment: 17 pages, 20 figures, accepted for publication in A&

    Stellar evolution with rotation and magnetic fields II: General equations for the transport by Tayler--Spruit dynamo

    Full text link
    We further develop the Tayler--Spruit dynamo theory, based on the most efficient instability for generating magnetic fields in radiative layers of differentially rotating stars. We avoid the simplifying assumptions that either the Ό\mu-- or the TT--gradient dominates, but we treat the general case and we also account for the nonadiabatic effects, which favour the growth of the magnetic field. Stars with a magnetic field rotate almost as a solid body. Several of their properties (size of the core, MS lifetimes, tracks, abundances) are closer to those of models without rotation than with rotation only. In particular, the observed N/C or N/H excesses in OB stars are better explained by our previous models with rotation only than by the present models with magnetic fields that predict no nitrogen excesses. We show that there is a complex feedback loop between the magnetic instability and the thermal instability driving meridional circulation. This opens the possibility for further magnetic models, but at this stage we do not know the relative importance of the magnetic fields due to the Tayler instability in stellar interiors.Comment: 14 pages, 11 figures, accepted for publication in Astronomy and Astrophysic

    Pre-suprenova evolution of rotating massive stars

    Full text link
    The Geneva evolutionary code has been modified to study the advanced stages (Ne, O, Si burnings) of rotating massive stars. Here we present the results of four 20 solar mass stars at solar metallicity with initial rotational velocities of 0, 100, 200 and 300 km/s in order to show the crucial role of rotation in stellar evolution. As already known, rotation increases mass loss and core masses (Meynet and Maeder 2000). A fast rotating 20 solar mass star has the same central evolution as a non-rotating 26 solar mass star. Rotation also increases strongly net total metal yields. Furthermore, rotation changes the SN type so that more SNIb are predicted (see Meynet and Maeder 2003 and N. Prantzos and S. Boissier 2003). Finally, SN1987A-like supernovae progenitor colour can be explained in a single rotating star scenario.Comment: To appear in proceedings of IAU Colloquium 192, "Supernovae (10 years of 1993J)", Valencia, Spain 22-26 April 2003, eds. J.M. Marcaide, K.W. Weiler, 5 pages, 8 figure

    Can very massive stars avoid Pair-instability Supernovae?

    Full text link
    Very massive primordial stars (140M⊙<M<260M⊙140 M_{\odot} < M < 260 M_{\odot}) are supposed to end their lives as pair-instability supernovae. Such an event can be traced by a typical chemical signature in low metallicity stars, but at the present time, this signature is lacking in the extremely metal-poor stars we are able to observe. Does it mean that those very massive objects did not form, contrarily to the primordial star formation scenarios? Could they avoid this tragical fate? We explore the effects of rotation, anisotropic mass loss and magnetic fields on the core size of a very massive Population III model, in order to check if its mass is sufficiently modified to prevent the pair instability. We obtain that a Population III model of 150M⊙150 M_{\odot} with υ/υcrit=0.56\upsilon/\upsilon_{\rm crit}=0.56 computed with the inclusion of wind anisotropy and Tayler-Spruit dynamo avoids the pair instability explosion.Comment: to be published in the conference proceedings of First Stars III, Santa Fe, 200

    GRB progenitors at low metallicities

    Get PDF
    We calculated pre-supernova evolution models of single rotating massive stars. These models reproduce observations during the early stages of the evolution very well, in particular Wolf--Rayet (WR) populations and ratio between type II and type Ib,c supernovae at different metallicities (Z). Using these models we found the following results concerning long and soft gamma--ray burst (GRB) progenitors: - GRBs coming from WO--type (SNIc) WR stars are only produced at low Z (LMC or lower). - The upper metallicity limit for GRBs is reduced to Z ~ 0.004 (SMC) when the effects of magnetic fields are included. - GRBs are predicted from the second (and probably the first) stellar generation onwards.Comment: 5 pages, 1 figure, to appear in the proceedings of "Swift and GRBs: Unveiling the Relativistic Universe", San Servolo, Venice, 5-9 June 200

    The thermonuclear production of F19 by Wolf-Rayet stars revisited

    Full text link
    New models of rotating and non-rotating stars are computed for initial masses between 25 and 120 Msun and for metallicities Z = 0.004, 0.008, 0.020 and 0.040 with the aim of reexamining the wind contribution of Wolf-Rayet (WR) stars to the F19 enrichment of the interstellar medium. Models with an initial rotation velocity vini = 300 km/s are found to globally eject less F19 than the non-rotating models. We compare our new predictions with those of Meynet & Arnould (2000), and demonstrate that the F19 yields are very sensitive to the still uncertain F19(alpha,p)Ne22 rate and to the adopted mass loss rates. Using the recommended mass loss rate values that take into account the clumping of the WR wind and the NACRE reaction rates when available, we obtain WR F19 yields that are significantly lower than predicted by Meynet & Arnould (2000), and that would make WR stars non-important contributors to the galactic F19 budget. In view, however, of the large nuclear and mass loss rate uncertainties, we consider that the question of the WR contribution to the galactic F19 remains quite largely open.Comment: 9 pages, 5 figures, accepted for publication in Astronomy & Astrophysic

    Stellar evolution with rotation XIII: Predicted GRB rates at various Z

    Full text link
    We present the evolution of rotation in models of massive single stars covering a wide range of masses and metallicities. These models reproduce very well observations during the early stages of the evolution (in particular WR populations and ratio between type II and type Ib,c at different metallicities, see Meynet & Maeder 2005). Our models predict the production of fast rotating black holes. Models with large initial masses or high metallicity end their life with less angular momentum in their central remnant with respect to the break-up limit for the remnant. Many WR star models satisfy the three main criteria (black hole formation, loss of hydrogen-rich envelope and enough angular momentum to form an accretion disk around the black hole) for gamma-ray bursts (GRB) production via the collapsar model (Woosley 1993). Considering all types of WR stars as GRB progenitors, there would be too many GRBs compared to observations. If we consider only WO stars (type Ic supernovae as is the case for SN2003dh/GRB030329, see Matheson et al. 2003) as GRBs progenitors, the GRBs production rates are in much better agreement with observations. WO stars are produced only at low metallicities in the present grid of models. This prediction can be tested by future observations.Comment: ~16 pages, 14 figures, accepted by A&

    Stellar evolution with rotation XI: Wolf-Rayet star populations at different metallicities

    Full text link
    Grids of models of massive stars (M≄M \ge 20 M⊙M_\odot) with rotation are computed for metallicities ZZ ranging from that of the Small Magellanic Cloud (SMC) to that of the Galactic Centre. The hydrostatic effects of rotation, the rotational mixing and the enhancements of the mass loss rates by rotation are included. The evolution of the surface rotational velocities of the most massive O--stars mainly depends on the mass loss rates and thus on the initial ZZ value. The minimum initial mass for a star for entering the Wolf--Rayet (WR) phase is lowered by rotation. For all metallicities, rotating stars enter the WR phase at an earlier stage of evolution and the WR lifetimes are increased, mainly as a result of the increased duration of the eWNL phase. Models of WR stars predict in general rather low rotation velocities (<50 < 50 km s−1^{-1}) with a few possible exceptions, particularly at metallicities lower than solar where WR star models have in general faster rotation and more chance to reach the break--up limit.The properties of the WR populations as predicted by the rotating models are in general in much better agreement with the observations in nearby galaxies. The observed variation with metallicity of the fractions of type Ib/Ic supernovae with respect to type II supernovae as found by Prantzos & Boissier (\cite{Pr03}) is very well reproduced by the rotating models, while non--rotating models predict much too low ratios.Comment: 20 pages, 16 figure, Astronomy and Astrophysics, in pres

    Stellar evolution with rotation and magnetic fields:I. The relative importance of rotational and magnetic effects

    Full text link
    We compare the current effects of rotation in stellar evolution to those of the magnetic field created by the Tayler instability. In stellar regions, where magnetic field can be generated by the dynamo due to differential rotation (Spruit 2002), we find that the growth rate of the magnetic instability is much faster than for the thermal instability. Thus, meridional circulation is negligible with respect to the magnetic fields, both for the transport of angular momentum and of chemical elements. Also, the horizontal coupling by the magnetic field, which reaches values of a few 10510^5 G, is much more important than the effects of the horizontal turbulence. The field, however, is not sufficient to distort the shape of the equipotentials. We impose the condition that the energy of the magnetic field created by the Tayler--Spruit dynamo cannot be larger than the energy excess present in the differential rotation. This leads to a criterion for the existence of the magnetic field in stellar interiors. Numerical tests are made in a rotating star model of 15 M⊙_{\odot} rotating with an initial velocity of 300 km⋅\cdots−1^{-1}.Comment: Accepted for Astronomy and Astrophysics, 11 pages, 8 figure
    • 

    corecore