8,816 research outputs found

    Dark Radiation Emerging After Big Bang Nucleosynthesis?

    Full text link
    We show how recent data from observations of the cosmic microwave background may suggest the presence of additional radiation density which appeared after big bang nucleosynthesis. We propose a general scheme by which this radiation could be produced from the decay of non-relativistic matter, we place constraints on the properties of such matter, and we give specific examples of scenarios in which this general scheme may be realized.Comment: v3: 5 pages, 1 figure. References added, typos corrected, notation changed throughout. v2: 5 pages, 1 figure. Reformatted, references added, acknowledgments updated, effect of radiation on CMB clarified. v1: 11 pages, 1 figur

    Wavelength Dependent PSFs and their impact on Weak Lensing Measurements

    Full text link
    We measure and model the wavelength dependence of the PSF in the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) survey. We find that PSF chromaticity is present in that redder stars appear smaller than bluer stars in the g,r,g, r, and ii-bands at the 1-2 per cent level and in the zz and yy-bands at the 0.1-0.2 per cent level. From the color dependence of the PSF, we fit a model between the monochromatic PSF trace radius, RR, and wavelength of the form R(λ)∝λbR(\lambda)\propto \lambda^{b}. We find values of bb between -0.2 and -0.5, depending on the epoch and filter. This is consistent with the expectations of a turbulent atmosphere with an outer scale length of ∌10−100\sim 10-100 m, indicating that the atmosphere is dominating the chromaticity. We find evidence in the best seeing data that the optical system and detector also contribute some wavelength dependence. Meyers and Burchat (2015) showed that bb must be measured to an accuracy of ∌0.02\sim 0.02 not to dominate the systematic error budget of the Large Synoptic Survey Telescope (LSST) weak lensing (WL) survey. Using simple image simulations, we find that bb can be inferred with this accuracy in the rr and ii-bands for all positions in the LSST field of view, assuming a stellar density of 1 star arcmin−2^{-2} and that the optical PSF can be accurately modeled. Therefore, it is possible to correct for most, if not all, of the bias that the wavelength-dependent PSF will introduce into an LSST-like WL survey.Comment: 14 pages, 10 figures. Submitted to MNRAS. Comments welcom

    Killing vectors in asymptotically flat space-times: I. Asymptotically translational Killing vectors and the rigid positive energy theorem

    Get PDF
    We study Killing vector fields in asymptotically flat space-times. We prove the following result, implicitly assumed in the uniqueness theory of stationary black holes. If the conditions of the rigidity part of the positive energy theorem are met, then in such space-times there are no asymptotically null Killing vector fields except if the initial data set can be embedded in Minkowski space-time. We also give a proof of the non-existence of non-singular (in an appropriate sense) asymptotically flat space-times which satisfy an energy condition and which have a null ADM four-momentum, under conditions weaker than previously considered.Comment: 30 page

    A method for analysis of fatty acids in coral

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109910/1/lno19741950846.pd

    Correctors for some nonlinear monotone operators

    Full text link
    In this paper we study homogenization of quasi-linear partial differential equations of the form -\mbox{div}\left( a\left( x,x/\varepsilon _h,Du_h\right) \right) =f_h on Ω\Omega with Dirichlet boundary conditions. Here the sequence (Δh)\left( \varepsilon _h\right) tends to 00 as h→∞h\rightarrow \infty and the map a(x,y,Ο)a\left( x,y,\xi \right) is periodic in y,y, monotone in Ο\xi and satisfies suitable continuity conditions. We prove that uh→uu_h\rightarrow u weakly in W01,p(Ω)W_0^{1,p}\left( \Omega \right) as h→∞,h\rightarrow \infty , where uu is the solution of a homogenized problem of the form -\mbox{div}\left( b\left( x,Du\right) \right) =f on Ω.\Omega . We also derive an explicit expression for the homogenized operator bb and prove some corrector results, i.e. we find (Ph)\left( P_h\right) such that Duh−Ph(Du)→0Du_h-P_h\left( Du\right) \rightarrow 0 in Lp(Ω,Rn)L^p\left( \Omega, \mathbf{R}^n\right)

    Incommensurate phonon anomaly and the nature of charge density waves in cuprates

    Get PDF
    While charge density wave (CDW) instabilities are ubiquitous to superconducting cuprates, the different ordering wavevectors in various cuprate families have hampered a unified description of the CDW formation mechanism. Here we investigate the temperature dependence of the low energy phonons in the canonical CDW ordered cuprate La1.875_{1.875}Ba0.125_{0.125}CuO4_{4}. We discover that the phonon softening wavevector associated with CDW correlations becomes temperature dependent in the high-temperature precursor phase and changes from a wavevector of 0.238 reciprocal space units (r.l.u.) below the ordering transition temperature up to 0.3~r.l.u. at 300~K. This high-temperature behavior shows that "214"-type cuprates can host CDW correlations at a similar wavevector to previously reported CDW correlations in non-"214"-type cuprates such as YBa2_{2}Cu3_{3}O6+ÎŽ_{6+\delta}. This indicates that cuprate CDWs may arise from the same underlying instability despite their apparently different low temperature ordering wavevectors.Comment: Accepted in Phys. Rev. X; 9 pages; 5 figures; 3 pages of supplementary materia

    Plastic Deformation in Laser-Induced Shock Compression of Monocrystalline Copper

    Get PDF
    Copper monocrystals were subjected to shock compression at pressures of 10–60 GPa by a short (3 ns initial) duration laser pulse. Transmission electron microscopy revealed features consistent with previous observations of shock-compressed copper, albeit at pulse durations in the ”s regime. The results suggest that the defect structure is generated at the shock front. A mechanism for dislocation generation is presented, providing a realistic prediction of dislocation density as a function of pressure. The threshold stress for deformation twinning in shock compression is calculated from the constitutive equations for slip, twinning, and the Swegle-Grady relationship

    Predicting the size and probability of epidemics in a population with heterogeneous infectiousness and susceptibility

    Full text link
    We analytically address disease outbreaks in large, random networks with heterogeneous infectivity and susceptibility. The transmissibility TuvT_{uv} (the probability that infection of uu causes infection of vv) depends on the infectivity of uu and the susceptibility of vv. Initially a single node is infected, following which a large-scale epidemic may or may not occur. We use a generating function approach to study how heterogeneity affects the probability that an epidemic occurs and, if one occurs, its attack rate (the fraction infected). For fixed average transmissibility, we find upper and lower bounds on these. An epidemic is most likely if infectivity is homogeneous and least likely if the variance of infectivity is maximized. Similarly, the attack rate is largest if susceptibility is homogeneous and smallest if the variance is maximized. We further show that heterogeneity in infectious period is important, contrary to assumptions of previous studies. We confirm our theoretical predictions by simulation. Our results have implications for control strategy design and identification of populations at higher risk from an epidemic.Comment: 5 pages, 3 figures. Submitted to Physical Review Letter

    Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser

    Get PDF
    Transient x-ray diffraction is used to record time-resolved information about the shock compression of materials. This technique has been applied on Nova shock experiments driven using a hohlraum x-ray drive. Data were recorded from the shock release at the free surface of a Si crystal, as well as from Si at an embedded ablator/Si interface. Modeling has been done to simulate the diffraction data incorporating the strained crystal rocking curves and Bragg diffraction efficiencies. Examples of the data and post-processed simulations are presented

    Significance of low energy impact damage on modal parameters of composite beams by design of experiments

    Get PDF
    This paper presents an experimental study on the effects of multi-site damage on the vibration response of composite beams damaged by low energy impacts around the barely visible impact damage limit (BVID). The variation of the modal parameters with different levels of impact energy and density of damage is studied. Vibration tests have been carried out with both burst random and classical sine dwell excitations in order to compare that which of the methods among Polymax and Half Bandwidth Method is more suitable for damping estimation in the presence of damage. Design of experiments (DOE) performed on the experimental data show that natural frequency is a more sensitive parameter for damage detection than the damping ratio. It also highlighted energy of impact as the factor having a more significant effect on the modal parameters. Half Bandwidth Method is found to be unsuitable for damping estimation in the presence of damage
    • 

    corecore