9,997 research outputs found
Effect of reheating on predictions following multiple-field inflation
We study the sensitivity of cosmological observables to the reheating phase
following inflation driven by many scalar fields. We describe a method which
allows semi-analytic treatment of the impact of perturbative reheating on
cosmological perturbations using the sudden decay approximation. Focusing on
-quadratic inflation, we show how the scalar spectral index and
tensor-to-scalar ratio are affected by the rates at which the scalar fields
decay into radiation. We find that for certain choices of decay rates,
reheating following multiple-field inflation can have a significant impact on
the prediction of cosmological observables.Comment: Published in PRD. 4 figures, 10 page
On the Numerical Dispersion of Electromagnetic Particle-In-Cell Code : Finite Grid Instability
The Particle-In-Cell (PIC) method is widely used in relativistic particle
beam and laser plasma modeling. However, the PIC method exhibits numerical
instabilities that can render unphysical simulation results or even destroy the
simulation. For electromagnetic relativistic beam and plasma modeling, the most
relevant numerical instabilities are the finite grid instability and the
numerical Cherenkov instability. We review the numerical dispersion relation of
the electromagnetic PIC algorithm to analyze the origin of these instabilities.
We rigorously derive the faithful 3D numerical dispersion of the PIC algorithm,
and then specialize to the Yee FDTD scheme. In particular, we account for the
manner in which the PIC algorithm updates and samples the fields and
distribution function. Temporal and spatial phase factors from solving
Maxwell's equations on the Yee grid with the leapfrog scheme are also
explicitly accounted for. Numerical solutions to the electrostatic-like modes
in the 1D dispersion relation for a cold drifting plasma are obtained for
parameters of interest. In the succeeding analysis, we investigate how the
finite grid instability arises from the interaction of the numerical 1D modes
admitted in the system and their aliases. The most significant interaction is
due critically to the correct represenation of the operators in the dispersion
relation. We obtain a simple analytic expression for the peak growth rate due
to this interaction.Comment: 25 pages, 6 figure
Feasibility model of a high reliability five-year tape transport, volume 2
Analysis of the design features of the modularized tape transport renders a life expectancy in excess of five years. Tests performed on the tape transport were directed toward determining its performance capability. These tests revealed that the tape jitter and skew are in the range achieved by high quality digital tape transports. Guidance of the tape in the lateral sense by the use of the two hybrid crowned rollers proved to be excellent. Tracking was maintained within less than one thousandth inch (approximately 2 micrometers). The guidance capability demonstrated makes possible the achievement of the performance objective of 7.2 x 10 to the 9th power storage capability employing 1500 ft. of one inch wide tape with a packing density of 5,000 bits per inch per track on 80 tracks. Also, the machine showed excellent characteristics operating over a wide range of tape speeds. The basic design concept lends itself to growth and adaptation to a wide range of recorder requirements
Feasibility model of a high reliability five-year tape transport, Volume 1
The development, performance, and test results for the spaceborne magnetic tape transport are discussed. An analytical model of the tape transport was used to optimize its conceptual design. Each of the subsystems was subjected to reliability analyses which included structural integrity, maintenance of system performance within acceptable bounds, and avoidance of fatigue failure. These subsystems were also compared with each other in order to evaluate reliability characteristics. The transport uses no mechanical couplings. Four drive motors, one for each reel and one for each of two capstans, are used in a differential mode. There are two hybrid, spherical, cone tapered-crown rollers for tape guidance. Storage of the magnetic tape is provided by a reel assembly which includes the reel, a reel support structure and bearings, dust seals, and a dc drive motor. A summary of transport test results on tape guidance, flutter, and skew is provided
Predicting the size and probability of epidemics in a population with heterogeneous infectiousness and susceptibility
We analytically address disease outbreaks in large, random networks with
heterogeneous infectivity and susceptibility. The transmissibility
(the probability that infection of causes infection of ) depends on the
infectivity of and the susceptibility of . Initially a single node is
infected, following which a large-scale epidemic may or may not occur. We use a
generating function approach to study how heterogeneity affects the probability
that an epidemic occurs and, if one occurs, its attack rate (the fraction
infected). For fixed average transmissibility, we find upper and lower bounds
on these. An epidemic is most likely if infectivity is homogeneous and least
likely if the variance of infectivity is maximized. Similarly, the attack rate
is largest if susceptibility is homogeneous and smallest if the variance is
maximized. We further show that heterogeneity in infectious period is
important, contrary to assumptions of previous studies. We confirm our
theoretical predictions by simulation. Our results have implications for
control strategy design and identification of populations at higher risk from
an epidemic.Comment: 5 pages, 3 figures. Submitted to Physical Review Letter
- …