577 research outputs found

    The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis

    Get PDF
    The study of cell division control within developing tissues is central to understanding the processes of pattern formation. The floral meristem of angiosperms gives rise to floral organs in a particular number and pattern. Despite its critical role, little is known about how cell division is controlled in the floral meristem, and few genes involved have been identified. We describe the phenotypic effects of mutations in WIGGUM, a gene required for control of cell proliferation in the floral and apical meristem of Arabidopsis thaliana. wiggum flowers contain more organs, especially sepals and petals, than found in wild-type flowers. This organ number phenotype correlates with specific size changes in the early floral meristem, preceding organ initiation. Genetic studies suggest that WIGGUM acts on a similar process but in a separate pathway than the CLAVATA1 and CLAVATA3 genes in meristem size regulation, and reveal interactions with other genes affecting meristem structure and identity. Analysis of double mutant phenotypes also reveals a role for WIGGUM in apical meristem function. We propose that WIGGUM plays a role in restricting cell division relative to cellular differentiation in specific regions of the apical and floral meristems

    A 3-dimensional fibre scaffold as an investigative tool for studying the morphogenesis of isolated plant cells

    Get PDF
    Background: Cell culture methods allow the detailed observations of individual plant cells and their internal processes. Whereas cultured cells are more amenable to microscopy, they have had limited use when studying the complex interactions between cell populations and responses to external signals associated with tissue and whole plant development. Such interactions result in the diverse range of cell shapes observed in planta compared to the simple polygonal or ovoid shapes in vitro. Microfluidic devices can isolate the dynamics of single plant cells but have restricted use for providing a tissue-like and fibrous extracellular environment for cells to interact. A gap exists, therefore, in the understanding of spatiotemporal interactions of single plant cells interacting with their three-dimensional (3D) environment. A model system is needed to bridge this gap. For this purpose we have borrowed a tool, a 3D nano- and microfibre tissue scaffold, recently used in biomedical engineering of animal and human tissue physiology and pathophysiology in vitro. Results: We have developed a method of 3D cell culture for plants, which mimics the plant tissue environment, using biocompatible scaffolds similar to those used in mammalian tissue engineering. The scaffolds provide both developmental cues and structural stability to isolated callus-derived cells grown in liquid culture. The protocol is rapid, compared to the growth and preparation of whole plants for microscopy, and provides detailed subcellular information on cells interacting with their local environment. We observe cell shapes never observed for individual cultured cells. Rather than exhibiting only spheroid or ellipsoidal shapes, the cells adapt their shape to fit the local space and are capable of growing past each other, taking on growth and morphological characteristics with greater complexity than observed even in whole plants. Confocal imaging of transgenic Arabidopsis thaliana lines containing fluorescent microtubule and actin reporters enables further study of the effects of interactions and complex morphologies upon cytoskeletal organisation both in 3D and in time (4D). Conclusions: The 3D culture within the fibre scaffolds permits cells to grow freely within a matrix containing both large and small spaces, a technique that is expected to add to current lithographic technologies, where growth is carefully controlled and constricted. The cells, once seeded in the scaffolds, can adopt a variety of morphologies, demonstrating that they do not need to be part of a tightly packed tissue to form complex shapes. This points to a role of the immediate nano- and micro-topography in plant cell morphogenesis. This work defines a new suite of techniques for exploring cell-environment interactions

    Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens

    Get PDF
    Background: Land plants evolved from aquatic algae more than 450 million years ago. Algal sisters of land plants grow through the activity of apical initial cells that cleave either in one plane to generate filaments or in two planes to generate mats. Acquisition of the capacity for cell cleavage in three planes facilitated the formation of upright bushy body plans and enabled the invasion of land. Evolutionary transitions between filamentous, planar, and bushy growth are mimicked within moss life cycles. Results: We have developed lineage analysis techniques to assess how transitions between growth forms occur in the moss Physcomitrella patens. We show that initial cells giving rise either to new filaments or bushy shoots are frequently juxtaposed on a single parent filament, suggesting a role for short-range cues in specifying differences in cell fate. Shoot initials cleave four times to establish a tetrahedral shape and subsequently cleave in three planes, generating bushy growth. Asymmetric and self-replacing divisions from the tetrahedral initial generate leaf initials that divide asymmetrically to self-replace and to produce daughter cells with restricted fate. The cessation of division in the leaf is distributed unevenly and contributes to final leaf shape. Conclusions: In contrast to flowering plants, changes in body plan in P. patens are regulated by cues acting at the level of single cells and are mediated through asymmetric divisions. Genetic mechanisms regulating shoot and leaf development in P. patens are therefore likely to differ substantially from mechanisms operating in plants with more recent evolutionary origins

    Non-natural Olefin Cyclopropanation Catalyzed by Diverse Cytochrome P450s and Other Hemoproteins

    Get PDF
    Recent work has shown that engineered variants of cytochrome P450_(BM3) (CYP102A1) efficiently catalyze non-natural reactions, including carbene and nitrene transfer reactions. Given the broad substrate range of natural P450 enzymes, we set out to explore if this diversity could be leveraged to generate a broad panel of new catalysts for olefin cyclopropanation (i.e., carbene transfer). Here, we took a step towards this goal by characterizing the carbene transfer activities of four new wild-type P450s that have different native substrates. All four were active and exhibited a range of product selectivities in the model reaction: cyclopropanation of styrene by using ethyl diazoacetate (EDA). Previous work on P450_(BM3) demonstrated that mutation of the axial coordinating cysteine, universally conserved among P450 enzymes, to a serine residue, increased activity for this non-natural reaction. The equivalent mutation in the selected P450s was found to activate carbene transfer chemistry both in vitro and in vivo. Furthermore, serum albumins complexed with hemin were also found to be efficient in vitro cyclopropanation catalysts

    Engineering Transcriptional Regulator Effector Specificity using Computational Design and In Vitro Rapid Prototyping: Developing a Vanillin Sensor

    Get PDF
    The pursuit of circuits and metabolic pathways of increasing complexity and robustness in synthetic biology will require engineering new regulatory tools. Feedback control based on relevant molecules, including toxic intermediates and environmental signals, would enable genetic circuits to react appropriately to changing conditions. In this work, variants of qacR, a tetR family repressor, were generated by computational protein design and screened in a cell-free transcription–translation (TX-TL) system for responsiveness to a new targeted effector. The modified repressors target vanillin, a growth-inhibiting small molecule found in lignocellulosic hydrolysates and other industrial processes. Promising candidates from the in vitro screen were further characterized in vitro and in vivo in a gene circuit. The screen yielded two qacR mutants that respond to vanillin both in vitro and in vivo. While the mutants exhibit some toxicity to cells, presumably due to off-target effects, they are prime starting points for directed evolution toward vanillin sensors with the specifications required for use in a dynamic control loop. We believe this process, a combination of the generation of variants coupled with in vitro screening, can serve as a framework for designing new sensors for other target compounds

    Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem

    Get PDF
    A central unanswered question in stem cell biology, both in plants and in animals, is how the spatial organization of stem cell niches are maintained as cells move through them. We address this question for the shoot apical meristem (SAM) which harbors pluripotent stem cells responsible for growth of above-ground tissues in flowering plants. We find that localized perception of the plant hormone cytokinin establishes a spatial domain in which cell fate is respecified through induction of the master regulator WUSCHEL as cells are displaced during growth. Cytokinin-induced WUSCHEL expression occurs through both CLAVATA-dependent and CLAVATA-independent pathways. Computational analysis shows that feedback between cytokinin response and genetic regulators predicts their relative patterning, which we confirm experimentally. Our results also may explain how increasing cytokinin concentration leads to the first steps in reestablishing the shoot stem cell niche in vitro

    The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis

    Get PDF
    Background: MicroRNAs (miRNAs) are small 20–25 nucleotide non-protein-coding RNAs that negatively regulate expression of genes in many organisms, ranging from plants to humans. The MIR164 family of miRNAs in Arabidopsis consists of three members that share sequence complementarity to transcripts of NAC family transcription factors, including CUP-SHAPED COTYLEDON1 (CUC1) and CUC2. CUC1 and CUC2 are redundantly required for the formation of boundaries between organ primordia. The analysis of transgenic plants that either overexpress miR164a or miR164b or express a miRNA-resistant version of CUC1 or CUC2 has shown that miRNA regulation of CUC1 and CUC2 is necessary for normal flower development. A loss-of-function allele of MIR164b did not result in a mutant phenotype, possibly because of functional redundancy among the three members of the MIR164 family. Results: In this study, we describe the characterization of the early extra petals1 (eep1) Arabidopsis mutant, whose predominant phenotype is the formation of extra petals in early-arising flowers. We demonstrate that eep1 is a loss-of-function allele of MIR164c, one of three known members of the MIR164 family. Our analyses of miR164c function and eep1 mir164b double mutants reveal that miR164c controls petal number in a nonredundant manner by regulating the transcript accumulation of the transcription factors CUC1 and CUC2. Conclusions: The data presented in this study indicate that closely related miRNA family members that are predicted to target the same set of genes can have different functions during development, possibly because of nonoverlapping expression patterns

    Orchestration of Floral Initiation by APETALA1

    Get PDF
    The MADS-domain transcription factor APETALA1 (AP1) is a key regulator of Arabidopsis flower development. To understand the molecular mechanisms underlying AP1 function, we identified its target genes during floral initiation using a combination of gene expression profiling and genome-wide binding studies. Many of its targets encode transcriptional regulators, including known floral repressors. The latter genes are down-regulated by AP1, suggesting that it initiates floral development by abrogating the inhibitory effects of these genes. Although AP1 acts predominantly as a transcriptional repressor during the earliest stages of flower development, at more advanced stages it also activates regulatory genes required for floral organ formation, indicating a dynamic mode of action. Our results further imply that AP1 orchestrates floral initiation by integrating growth, patterning, and hormonal pathways

    Study of Sexual Functioning Determinants in Breast Cancer Survivors

    Full text link
    Our goal was to identify the treatment, personal, interpersonal, and hormonal (testosterone) factors in breast cancer survivors (BCSs) that determine sexual dysfunction. The treatment variables studied were type of surgery, chemotherapy, radiation, and tamoxifen. The personal, interpersonal, and physiologic factors were depression, body image, age, relationship distress, and testosterone levels. A sample of 55 female breast cancer survivors seen for routine follow-up appointments from July 2002 to September 2002 were recruited to complete the Female Sexual Functioning Index (FSFI), Hamilton Depression Inventory (HDI), Body Image Survey (BIS), Marital Satisfaction Inventory-Revised (MSI-R), a demographic questionnaire, and have a serum testosterone level drawn. The average time since diagnosis was 4.4 years (SD 3.4 years). No associations were found between the type of cancer treatment, hormonal levels, and sexual functioning. BCS sexual functioning was significantly poorer than published normal controls in all areas but desire. The BCSs’ level of relationship distress was the most significant variable affecting arousal, orgasm, lubrication, satisfaction, and sexual pain. Depression and having traditional role preferences were the most important determinants of lower sexual desire. BCSs on antidepressants had higher levels of arousal and orgasm dysfunction. Women who were older had significantly more concerns about vaginal lubrication and pain. Relationship concerns, depression, and age are important influences in the development of BCS sexual dysfunction. The relationship of testosterone and sexual dysfunction needs further study with larger samples and more accurate assay techniques.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72034/1/j.1075-122X.2005.00131.x.pd
    corecore