35 research outputs found

    Applicability of a short/rapid 13C-urea breath test for Helicobacter pylori: retrospective multicenter chart review study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Carbon labeled urea breath tests usually entail a two point sampling with a 20 to 30-minute gap. Our aim was to evaluate the duration of time needed for diagnosing <it>Helicobacter pylori </it>by the BreathID<sup>® </sup>System.</p> <p>Methods</p> <p>This is a retrospective multicenter chart review study. Test location, date, delta over baseline, and duration of the entire test were recorded. Consecutively <sup>13</sup>C urea breath tests results were extracted from the files over a nine year period.</p> <p>Results</p> <p>Of the 12,791 tests results, 35.1% were positively diagnosed and only 0.1% were inconclusive. A statistically significant difference in prevalence among the countries was found: Germany showing the lowest, 13.3%, and Israel the highest, 44.1%. Significant differences were found in time to diagnosis: a positive diagnosis had the shortest and an inconclusive result had the longest. Overall test duration averaged 15.1 minutes in Germany versus approximately 13 minutes in other countries. Diagnosis was achieved after approximately 9 minutes in Israel, Italy and Switzerland, but after 10 on average in the others. The mean delta over baseline value for a negative diagnosis was 1.03 ± 0.86, (range, 0.9 - 5), versus 20.2 ± 18.9, (range, 5.1 - 159.4) for a positive one.</p> <p>Conclusions</p> <p>The BreathID<sup>® </sup>System used in diagnosing <it>Helicobacter pylori </it>can safely shorten test duration on average of 10-13 minutes without any loss of sensitivity or specificity and with no test lasting more than 21 minutes.</p

    Alkalizing Reactions Streamline Cellular Metabolism in Acidogenic Microorganisms

    Get PDF
    An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms

    Prolonged Survival and Cytoplasmic pH Homeostasis of Helicobacter pylori at pH 1

    No full text
    In the presence of urea, Helicobacter pylori survived for at least 3 h at pH 1. Under these conditions, the cells maintained their cytoplasmic pH at 5.8. De novo protein synthesis during acid shock was not essential for survival of H. pylori at pH 1
    corecore