20 research outputs found

    Measurement of Flexural Rigidity of Multi-Walled Carbon Nanotubes by Dynamic Scanning Electron Microscopy

    Get PDF
    In this work the flexural rigidity of individual large diameter multi-walled carbon nanotubes (MWCNTs) was investigated. The bending modulus were obtained by detecting the resonance frequencies of mechanically excited cantilevered carbon nanotubes using the so-called dynamic scanning electron microscopy technique, and applying the Euler–Bernoulli beam theory. For the nanotubes studied, we determined a modulus of up to 160 GPa. This agrees with values reported by other authors for MWCNTs produced by catalytic chemical vapor deposition, however, it is 6-8 times smaller than values reported for single and multi-walled carbon nanotubes produced by arc-discharge synthesis. Toxicological studies with carbon nanotubes have been showing that inhaled airborne nanofibers that reach the deep airways of the respiratory system may lead to serious, asbestos-like lung diseases. These studies suggested that their toxicity critically depends on the fiber flexural rigidity, with high rigidity causing cell lesions. To complement the correlation between observed toxicological effects and fiber rigidities, reliable and routinely applicable measurement techniques for the flexural rigidity of nanofibers are required

    Comparison of geometrical layouts for a multi-box aerosol model from a single-chamber dispersion study

    Get PDF
    Models are increasingly used to estimate and pre-emptively calculate the occupational exposure of airborne released particulate matter. Typical two-box models assume instant and fully mixed air volumes, which can potentially cause issues in cases with fast processes, slow air mixing, and/or large volumes. In this study, we present an aerosol dispersion model and validate it by comparing the modelled concentrations with concentrations measured during chamber experiments. We investigated whether a better estimation of concentrations was possible by using different geometrical layouts rather than a typical two-box layout. A one-box, two-box, and two three-box layouts were used. The one box model was found to underestimate the concentrations close to the source, while overestimating the concentrations in the far field. The two-box model layout performed well based on comparisons from the chamber study in systems with a steady source concentration for both slow and fast mixing. The three-box layout was found to better estimate the concentrations and the timing of the peaks for fluctuating concentrations than the one-box or two-box layouts under relatively slow mixing conditions. This finding suggests that industry-relevant scaled volumes should be tested in practice to gain more knowledge about when to use the two-box or the three-box layout schemes for multi-box models

    Grafting of Amino and Nitrogen Groups on Polymers by Means of Plasma Functionalisation

    No full text
    The main objective of this work is to contribute to the understanding of the grafting of nitrogen and amino surface functional groups on polymers by means of plasmas containing nitrogen and hydrogen. For this purpose, many aspects of plasma surface modification were studied. In the frame of this work, a new, UHV-sealed plasma reactor system was put into operation. The system is special for its clean reaction environment and the possibility to perform quasi in situ XPS measurements. A comparison of the UHV system to a fine vacuum reactor showed that a clean reaction environment is mandatory for reproducible plasma processing and efficient nitrogen and amino functionalisation. A key motivation for the present work was the observation that the non-coating plasma processes reported in literature fail to graft primary amino groups on polymer surfaces with densities that significantly exceed 3 - 4% NH2/C. In order to investigate this phenomenon in detail, this work followed two experimental tracks: On the one hand, a broad systematic study of plasma processing parameters was performed. On the other, the surface diagnostics methods used for the quantification of amino groups were critically reviewed. For this, a numerical algorithm was developed to reconstruct the element depth profile from angle-resolved XPS data. In the scope of the process parameter study, cw and pulsed microwave (MW) plasma excitation was compared to radio-frequency (RF) excitation. The home-built MW source was studied and optimised with respect to ignition behaviour and power efficiency. The performance of the MW and RF plasmas in polymer surface modifications was studied in various gas mixtures containing NH3 and H,, or N2 and H,. Also the differences of glow and afterglow processing of polymers were investigated. Large variations of the nitrogen and primary amino grafting efficiencies were obtained. They triggered a number of new ideas for the underlying reaction mechanisms. Special attendance was devoted to the selectivity of the functionalisation processes for primary amino groups. Nitrogen-containing discharges that were rich in hydrogen achieved selectivities up to 100%. The upper limit of 3 - 4% amino groups on the surface, however, was not passed. Angle-resolved XPS measurements revealed a systematic problem for the definition of a surface density, which is capable of explaining the upper limit for amino groups. It is either due to a limited labelling depth of amino groups by the applied TFBA derivatisation reaction, or to a limited functionalisation depth of the plasma process. One very efficient nitrogen-grafting plasma process that was developed on polystyrene was applied to seven other unfluorinated polymers. The similarity of the resulting functionalisation demonstrated a good transfer-ability of plasma surface functionalisation processes. Plasma treatments of polymer surfaces, especially in hydrogen-containing gases, are known to be generally followed by uncontrollable oxidation phenomena. The properties of plasma-functionalised polymer surfaces were therefore studied in conjunction with ageing effects. Quasi in situ XPS analysis allowed to distinguish the influence of oxygen contamination during the plasma process from post-process oxidation due to contact of plasma-treated samples to atmospheric oxygen. The surface modification experiments were accompanied by several gas phase diagnostic techniques. In the scope of this work, the UHV reactor system was equipped with optical emission spectroscopy (OES), two-photon absorption laser-induced fluorescence (TALIF), and tunable diode laser absorption spectroscopy (TDLAS). A separate plasma source was setup to perform an absolute quantification of the vacuum-ultra-violet (VUV) emission intensity of hydrogen-containing MW-excited plasmas. The techniques were evaluated with respect to their contribution to an understanding of the plasma processing of polymers. The rich experimental data allowed to suggest new reaction mechanisms for the grafting of nitrogen- and amino functional groups. Surface passivation experiments in H, plasmas of nitrogen-functionalised surfaces initiated a re-evaluation and an extension of the mechanism of selective etching [1]. Together with two other new reaction mechanisms, a hypothetical reaction scheme was suggested. It was studied by the help of two numerical models for heterogenous reactions of radicals with the surface. In order to avoid the complexity of the fragmentation process of NH,, the models were restricted to discharges in N, and H9. Despite the sparse information on the composition of the gas phase, the data of two experimental series showed a very particular phenomenology that allowed a first test of the model. The test supports the newly-suggested reaction mechanisms. Especially the role of NH2 attachment to open reaction sites for the grafting of amino groups was emphasised. A more stringent test of the model is left to future experiments with extended gas phase diagnostic means.keine Angabe

    UV Spectrometric Indirect Analysis of Brominated MWCNTs with UV Active Thiols and an Alkene—Reaction Kinetics, Quantification and Differentiation of Adsorbed Bromine and Oxygen

    No full text
    Indirect UV-absorption spectrometry was shown to be a valuable tool for chemical characterization of functionalized carbon nanotubes (CNTs). It complements data from X-ray photoelectron spectroscopy (XPS) or FTIR analysis since it helps to clarify the type and concentration of functional groups. The principles of indirect application of UV-spectrometry and its mathematical interpretation are discussed. Their facile application, together with their adequate sensitivity and high flexibility, make UV-absorption-based approaches a valuable alternative to fluorescence spectrometry. Here, the approach was applied to the chemical analysis of oxidizing substances on CNTs. For this, pristine CNTs of low but finite oxygen content as well as brominated CNTs were analyzed by reaction in suspension with UV-active thiol reagents and a styrene derivative. It was shown that carefully selected reagents allow differentiation and quantification of bromine and generally oxidizing entities like oxygen. For brominated CNTs, it was shown that physisorbed bromine may dominate the overall bromine content

    Approaches on MWCNT diameters and its relation to tumor development

    No full text
    Question: Some forms of carbon nanotubes (CNT) have been found to exhibit carcinogenic potential depending on their morphological characteristics and catalyst impurities. The use of CNTs therefore requires appropriate risk and safety assessment. Correlation of hazards of biodurable fibres to specific morphologies is an approach that has been successfully developed for microscale fibres. The derived "fibre toxicological paradigm" achieves morphology-based hazard classification for a broad class of materials. The present study aims at contributing to an extension of this paradigm to the world of nanoscale fibres. Methods: CNTs of different diameters will be compared with respect to tumor development after intraperitoneal (i.p.) injection. It will be studied whether a diameter based threshold for CNT carcinogenicity can be identified. Rats will be administered a single i.p. injection. The tumor incidence will be histopathologically approximately evaluated performed after two years post application. Additionally, an interim sacrifice will be inflammatory three month to investigate potential effects in the peritoneum. Five different types of CNT will be tested in two concentrations (0.1 and 1.0 x 109 WHO-fibers): One single-walled CNT type, one multi-walled CNT type with an average diameter of 10 nm and a length of > 5 µm, two custom-synthesized multi-walled CNTs with average diameters of 20 and of 30 nm and a length > 5 µm, and one short MWCNT (max. 4-5 µm) with a diameter of > 40 nm. Amosite will be used as positive control. All nanomaterials will be comprehensively characterized before and after dispersion to reliable determine administered diameter distributions together with other characteristics that potentially influence toxicity, including length, purity and rigidity. Conclusion: The generated data is expected to provide information on morphology induced modes-of-action of CNTs including inflammation and carcinogenicity. The data is expected to contribute to the development of a morphology-based classification approach for CNTs and other inert nanofibres. This project is funded by the German FederalInstitute for Occupational Safety and Health (F2376)
    corecore