135 research outputs found

    Adhesion of oral streptococci to all-ceramics dental restorative materials invitro

    Get PDF
    In recent years, patients have benefited from the development of better and more esthetic materials, including all-ceramics dental restorative materials. Dental plaque formation on teeth and restorative materials plays an important role in the pathogenesis of oral diseases. This study investigates initial adhesion of stationary phase streptococcal species to different all-ceramics dental restorative materials. The saliva-coated materials were incubated with the bacteria for 1h in an invitro flow chamber which mimics environmental conditions in the oral cavity. Number and vitality of adhering bacteria were determined microscopically after staining. Surface roughness and the composition of the materials had no distinctive influence on bacterial adhesion. However, S.mutans and S.sobrinus adhered about tenfold less numerous to all materials than the other streptococcal species. Further, there was a correlation between bacterial vitality and materials' glass content. The results showed that early plaque formation was influenced predominantly by the presence of the salivary pellicle rather than by material dependent parameters whereas the composition of the all-ceramics appeared to have influenced the percentage of viable cells during the adhesion process. This presented invitro technique may provide a useful model to study the influence of different parameters on adherence of oral streptococcal specie

    Comparison of the immediate effects of gaseous ozone and chlorhexidine gel on bacteria in cavitated carious lesions in children in vivo

    Get PDF
    Clinical application of ozone gas has been shown to arrest the progression of dentinal caries in children. In this study, we compare the immediate effects of gaseous ozone and chlorhexidine gel on bacteria in cavitated carious lesions in children. Forty children, each with at least two open occlusal carious lesions, were enrolled in the study. Two teeth were chosen randomly. In one lesion, overlying soft biological material was removed, whilst the other lesion was not excavated. Cavities were rinsed with sterile water and dried with air. A standardised sample was taken from the mesial part of each lesion. Then, gaseous ozone (HealOzone) or 1% chlorhexidine gel (Corsodyl) was applied for 30s on both lesions of 20 children each, and a second sample was taken from the distal part of each lesion. The anaerobic microbiota was cultivated; the number of colony forming units was calculated per milligram sample. The two-sided paired t test showed no significant (P > 0.05) differences in the reduction of total bacterial counts per milligram comparing samples before and after ozone or chlorhexidine application. The tests also showed no statistically significant difference whether the superficial decayed dentine had been removed before ozone or with chlorhexidine treatment or not. It can be concluded that gaseous ozone or chlorhexidine gel application for 30s to deep occlusal carious cavities had no significant immediate antimicrobial effects whether the superficial decayed layers dentine were removed or no

    Ultrasonographic findings in a cow with abomasal lymphosarcoma: Case report

    Get PDF
    Background: This case report describes the clinical and ultrasonographic findings in a Swiss Braunvieh cow with lymphosarcoma of the abomasum. Case Presentation: The main clinical findings were vomiting in response to eating and melena. The results of serum biochemistry and rumen fluid analysis were indicative of abomasal reflux syndrome. The main ultrasonographic findings were two enlarged lymph nodes caudal to the reticulum and a severely enlarged abomasum with thickening of the abomasal wall and folds. Based on all the findings, pyloric stenosis caused by lymphosarcoma was tentatively diagnosed and later confirmed at postmortem examination. Conclusions: This is an interesting case, which broadens the spectrum of abomasal reflux syndrome

    Influence of gaseous ozone in peri-implantitis: bactericidal efficacy and cellular response. An in vitro study using titanium and zirconia

    Get PDF
    Dental implants are prone to bacterial colonization which may result in bone destruction and implant loss. Treatments of peri-implant disease aim to reduce bacterial adherence while leaving the implant surface intact for attachment of bone-regenerating host cells. The aims of this study were to investigate the antimicrobial efficacy of gaseous ozone on bacteria adhered to various titanium and zirconia surfaces and to evaluate adhesion of osteoblast-like MG-63 cells to ozone-treated surfaces. Saliva-coated titanium (SLA and polished) and zirconia (acid etched and polished) disks served as substrates for the adherence of Streptococcus sanguinis DSM20068 and Porphyromonas gingivalis ATCC33277. The test specimens were treated with gaseous ozone (140ppm; 33mL/s) for 6 and 24s. Bacteria were resuspended using ultrasonication, serially diluted and cultured. MG-63 cell adhesion was analyzed with reference to cell attachment, morphology, spreading, and proliferation. Surface topography as well as cell morphology of the test specimens were inspected by SEM. The highest bacterial adherence was found on titanium SLA whereas the other surfaces revealed 50-75% less adherent bacteria. P. gingivalis was eliminated by ozone from all surfaces within 24s to below the detection limit (≥99.94% reduction). S. sanguinis was more resistant and showed the highest reduction on zirconia substrates (>90% reduction). Ozone treatment did not affect the surface structures of the test specimens and did not influence osteoblastic cell adhesion and proliferation negatively. Titanium (polished) and zirconia (acid etched and polished) had a lower colonization potential and may be suitable material for implant abutments. Gaseous ozone showed selective efficacy to reduce adherent bacteria on titanium and zirconia without affecting adhesion and proliferation of osteoblastic cells. This in vitro study may provide a solid basis for clinical studies on gaseous ozone treatment of peri-implantitis and revealed an essential base for sufficient tissue regeneratio

    Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro

    Get PDF
    This in vitro study examined (a) the anti-bacterial efficacy of a pulsed erbium-doped yttrium aluminum garnet (Er:YAG) laser applied to Streptococcus sanguinis or Porphyromonas gingivalis adhered to either polished or microstructured titanium implant surfaces, (b) the response of osteoblast-like cells and (c) adhesion of oral bacteria to titanium surfaces after laser irradiation. Thereto, (a) bacteria adhered to titanium disks were irradiated with a pulsed Er:YAG laser (λ = 2,940nm) at two different power settings: a lower mode (12.74J/cm2 calculated energy density) and a higher mode (63.69J/cm2). (b) After laser irradiation with both settings of sterile titanium, disks were seeded with 104 MG-63 cells/cm2. Adhesion and proliferation were determined after 1, 4, and 24h by fluorescence microscopy and scanning electron microscopy. (c) Bacterial adhesion was also studied on irradiated (test) and non-irradiated (control) surfaces. Adhered P. gingivalis were effectively killed, even at the lower laser setting, independent of the material's surface. S. sanguinis cells adhered were effectively killed only at the higher setting of 63.69J/cm2. Laser irradiation of titanium surfaces had no significant effects on (b) adhesion or proliferation of osteoblast-like MG-63 cells or (c) adhesion of both oral bacterial species in comparison to untreated surfaces. An effective decontamination of polished and rough titanium implant surfaces with a Er:YAG laser could only be achieved with a fluence of 63.69J/cm2. Even though this setting may lead to certain surface alterations, no significant adverse effect on subsequent colonization and proliferation of MG-63 cells or increased bacterial adhesion was found in comparison to untreated control surfaces

    Deregulation of transcription factors controlling intestinal epithelial cell differentiation; a predisposing factor for reduced enteroendocrine cell number in morbidly obese individuals

    Get PDF
    Morbidly obese patients exhibit impaired secretion of gut hormones that may contribute to the development of obesity. After bariatric surgery there is a dramatic increase in gut hormone release. In this study, gastric and duodenal tissues were endoscopically collected from lean, and morbidly obese subjects before and 3 months after laparoscopic sleeve gastrectomy (LSG). Tissue morphology, abundance of chromogranin A, gut hormones, α-defensin, mucin 2, Na+/glucose co-transporter 1 (SGLT1) and transcription factors, Hes1, HATH1, NeuroD1, and Ngn3, were determined. In obese patients, the total number of enteroendocrine cells (EEC) and EECs containing gut hormones were significantly reduced in the stomach and duodenum, compared to lean, and returned to normality post-LSG. No changes in villus height/crypt depth were observed. A significant increase in mucin 2 and SGLT1 expression was detected in the obese duodenum. Expression levels of transcription factors required for differentiation of absorptive and secretory cell lineages were altered. We propose that in obesity, there is deregulation in differentiation of intestinal epithelial cell lineages that may influence the levels of released gut hormones. Post-LSG cellular differentiation profile is restored. An understanding of molecular mechanisms controlling epithelial cell differentiation in the obese intestine assists in the development of non-invasive therapeutic strategies

    Green tea extract enhances parieto-frontal connectivity during working memory processing

    Get PDF
    Rationale: It has been proposed that green tea extract may have a beneficial impact on cognitive functioning, suggesting promising clinical implications. However, the neural mechanisms underlying this putative cognitive enhancing effect of green tea extract still remain unknown. Objectives: This study investigates whether the intake of green tea extract modulates effective brain connectivity during working memory processing and whether connectivity parameters are related to task performance. Material and methods: Using a double-blind, counterbalanced, within-subject design, 12 healthy volunteers received a milk whey-based soft drink containing 27.5g of green tea extract or a milk whey-based soft drink without green tea as control substance while undergoing functional magnetic resonance imaging. Working memory effect on effective connectivity between frontal and parietal brain regions was evaluated using dynamic causal modeling. Results: Green tea extract increased the working memory induced modulation of connectivity from the right superior parietal lobule to the middle frontal gyrus. Notably, the magnitude of green tea induced increase in parieto-frontal connectivity positively correlated with improvement in task performance. Conclusions: Our findings provide first evidence for the putative beneficial effect of green tea on cognitive functioning, in particular, on working memory processing at the neural system level by suggesting changes in short-term plasticity of parieto-frontal brain connections. Modeling effective connectivity among frontal and parietal brain regions during working memory processing might help to assess the efficacy of green tea for the treatment of cognitive impairments in psychiatric disorders such as dementia

    Erythritol and xylitol differentially impact brain networks involved in appetite regulation in healthy volunteers

    Get PDF
    Background: There is a growing consensus that sugar consumption should be reduced and the naturally occurring, low-calorie sweeteners xylitol and erythritol are gaining popularity as substitutes, but their effect on brain circuitry regulating appetite is unknown. Aim: The study’s objective was to examine the effects of the two sweeteners on cerebral blood flow (rCBF) and resting functional connectivity in brain networks involved in appetite regulation, and test whether these effects are related to gut hormone release. Methods: The study was performed as a randomized, double-blind, placebo-controlled, cross-over trial. Twenty volunteers received intragastric (ig) loads of 50g xylitol, 75g erythritol, 75g glucose dissolved in 300mL tap water or 300mL tap water. Resting perfusion and blood oxygenation level-dependent data were acquired to assess rCBF and functional connectivity. Blood samples were collected for determination of CCK, PYY, insulin and glucose. Results: We found: (i) xylitol, but not erythritol, increased rCBF in the hypothalamus, whereas glucose had the opposite effect; (ii) graph analysis of resting functional connectivity revealed a complex pattern of similarities and differences in brain network properties following xylitol, erythritol, and glucose; (iii) erythritol and xylitol induced a rise in CCK and PYY, (iv) erythritol had no and xylitol only minimal effects on glucose and insulin. Conclusion: Xylitol and erythritol have a unique combination of properties: no calories, virtually no effect on glucose and insulin while promoting the release of gut hormones, and impacting appetite-regulating neurocircuitry consisting of both similarities and differences with glucose
    corecore