58,044 research outputs found

    Gaston Memorial Hospital: Driving Quality Improvement With Data, Guidelines, and Real-Time Feedback

    Get PDF
    Describes efforts to reduce variance in provider practice patterns through data analysis and benchmarking of process-of-care measures. Discusses strategies such as sharing data, feedback, and best practices in ways physicians can utilize them immediately

    Analytic invariant charge and the lattice static quark-antiquark potential

    Full text link
    A recently developed model for the QCD analytic invariant charge is compared with quenched lattice simulation data on the static quark-antiquark potential. By employing this strong running coupling one is able to obtain the confining quark-antiquark potential in the framework of the one-gluon exchange model. To achieve this objective a technique for evaluating the integrals of a required form is developed. Special attention is paid here to removing the divergences encountered the calculations. All this enables one to examine the asymptotic behavior of the potential at both small and large distances with high accuracy. An explicit expression for the quark-antiquark potential, which interpolates between these asymptotics, and satisfies the concavity condition, is proposed. The derived potential coincides with the perturbative results at small distances, and it is in a good agreement with the lattice data in the nonperturbative physically-relevant region. An estimation of the parameter ΛQCD\Lambda_{QCD} is obtained for the case of pure gluodynamics. It is found to be consistent with all the previous estimations of ΛQCD\Lambda_{QCD} in the framework of approach in hand.Comment: LaTeX2e, 10 pages with 3 EPS figure

    Asymmetric supernova remnants generated by Galactic, massive runaway stars

    Full text link
    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum, and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the center of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 Mo progenitor moving with velocity 20 km/s and to our initially 40 Mo progenitor. These remnants generate mixing of ISM gas, stellar wind and supernova ejecta that is particularly important upstream from the center of the explosion. Their lightcurves are dominated by emission from optically-thin cooling and by X-ray emission of the shocked ISM gas. We find that these remnants are likely to be observed in the [OIII] lambda 5007 spectral line emission or in the soft energy-band of X-rays. Finally, we discuss our results in the context of observed Galactic supernova remnants such as 3C391 and the Cygnus Loop.Comment: 21 pages, 16 figure

    Localization of Two-Dimensional Quantum Walks

    Full text link
    The Grover walk, which is related to the Grover's search algorithm on a quantum computer, is one of the typical discrete time quantum walks. However, a localization of the two-dimensional Grover walk starting from a fixed point is striking different from other types of quantum walks. The present paper explains the reason why the walker who moves according to the degree-four Grover's operator can remain at the starting point with a high probability. It is shown that the key factor for the localization is due to the degeneration of eigenvalues of the time evolution operator. In fact, the global time evolution of the quantum walk on a large lattice is mainly determined by the degree of degeneration. The dependence of the localization on the initial state is also considered by calculating the wave function analytically.Comment: 21 pages RevTeX, 4 figures ep

    Quantum Chinos Game: winning strategies through quantum fluctuations

    Full text link
    We apply several quantization schemes to simple versions of the Chinos game. Classically, for two players with one coin each, there is a symmetric stable strategy that allows each player to win half of the times on average. A partial quantization of the game (semiclassical) allows us to find a winning strategy for the second player, but it is unstable w.r.t. the classical strategy. However, in a fully quantum version of the game we find a winning strategy for the first player that is optimal: the symmetric classical situation is broken at the quantum level.Comment: REVTEX4.b4 file, 3 table

    Nanodust detection near 1 AU from spectral analysis of Cassini/RPWS radio data

    Full text link
    Nanodust grains of a few nanometer in size are produced near the Sun by collisional break-up of larger grains and picked-up by the magnetized solar wind. They have so far been detected at 1 AU by only the two STEREO spacecraft. Here we analyze the spectra measured by the radio and plasma wave instrument onboard Cassini during the cruise phase close to Earth orbit; they exhibit bursty signatures similar to those observed by the same instrument in association to nanodust stream impacts on Cassini near Jupiter. The observed wave level and spectral shape reveal impacts of nanoparticles at about 300 km/s, with an average flux compatible with that observed by the radio and plasma wave instrument onboard STEREO and with the interplanetary flux models

    Quantum walks on two-dimensional grids with multiple marked locations

    Full text link
    The running time of a quantum walk search algorithm depends on both the structure of the search space (graph) and the configuration of marked locations. While the first dependence have been studied in a number of papers, the second dependence remains mostly unstudied. We study search by quantum walks on two-dimensional grid using the algorithm of Ambainis, Kempe and Rivosh [AKR05]. The original paper analyses one and two marked location cases only. We move beyond two marked locations and study the behaviour of the algorithm for an arbitrary configuration of marked locations. In this paper we prove two results showing the importance of how the marked locations are arranged. First, we present two placements of kk marked locations for which the number of steps of the algorithm differs by Ω(k)\Omega(\sqrt{k}) factor. Second, we present two configurations of kk and k\sqrt{k} marked locations having the same number of steps and probability to find a marked location
    corecore