102 research outputs found

    Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    Get PDF
    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of xray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams

    Probe-pulse optimization for nonresonant suppression in hybrid fs/ps coherent anti-Stokes Raman scattering at high temperature

    Get PDF
    Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) offers accurate thermometry at kHz rates for combustion diagnostics. In high-temperature flames, selection of probe-pulse characteristics is key to simultaneously optimizing signal-to-nonresonant-background ratio, signal strength, and spectral resolution. We demonstrate a simple method for enhancing signal-to-nonresonant-background ratio by using a narrowband Lorentzian filter to generate a time-asymmetric probe pulse with full-width-half-maximum (FWHM) pulse width of only 240 fs. This allows detection within just 310 fs after the Raman excitation for eliminating nonresonant background while retaining 45% of the resonant signal at 2000 K. The narrow linewidth is comparable to that of a time-symmetric sinc2 probe pulse with a pulse width of ~2.4 ps generated with a conventional 4-f pulse shaper. This allows nonresonant-background-free, frequency-domain vibrational spectroscopy at high temperature, as verified using comparisons to a time-dependent theoretical fs/ps CARS model

    Dual-pump vibrational/rotational femtosecond/ picosecond coherent anti-Stokes Raman scattering temperature and species measurements

    Get PDF
    A method for simultaneous ro-vibrational and pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) is presented for multi-species detection and improved temperature sensitivity from room temperature to flame conditions. N2∕CH4 vibrational and N2∕O2∕H2 rotational Raman coherences are excited simultaneously using fs pump pulses at 660 and 798 nm, respectively, and a common fs Stokes pulse at 798 nm. A fourth narrowband 798 nm ps pulse probes all coherence states at a time delay that minimizes nonresonant background and the effects of collisions. The transition strength is concentration dependent, while the distribution among observed transitions is related to temperature through the Boltzmann distribution. The broadband excitation pulses and multiplexed signal are demonstrated for accurate thermometry from 298 to 2400 K and concentration measurements of four key combustion species

    Femtosecond Laser Electronic Excitation Tagging, FLEET, for Combustion and Flow

    Get PDF
    Femtosecond Laser Electronic Excitation Tagging, known as FLEET, can be used to measure the nitrogen gas content within a gaseous mixture. FLEET does not require any trace particles that could affect the combustion reaction or physical properties of the flow. Another advantage is the simple experimental implementation. In this work a 120-femtosecond laser pulse was focused in to the probe volume to dissociate the nitrogen gas via multiphoton process. The intensity of the light emitted after the recombination is proportional to the nitrogen gas to oxygen mass ratio as the dissociated nitrogen bonds with oxygen to form nitric oxide and other reactions, which does not emit light. Intensity of the light from FLEET within a methane-air diffusion flame was used to determine fuel/air ratio.. The intensity of FLEET signal was calibrated for different mixtures in test cell in the ranges of pressures to simulate the change of number density due to increase of the temperature in the flame

    Simultaneous high-speed measurement of temperature and lifetime-corrected OH laserinduced fluorescence in unsteady flames

    Get PDF
    A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80 MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2 ps) for Rayleigh-scattering thermometry at 460 nm and lifetime-corrected OH LIF at 306.5 nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown

    Communication: Time-domain measurement of high-pressure N2 and O2 self-broadened linewidths using hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering

    Get PDF
    The direct measurement of self-broadened linewidths using the time decay of pure-rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) signals is demonstrated in gas-phase N2 and O2 from 1–20 atm. Using fs pump and Stokes pulses and a spectrally narrowed ps probe pulse, collisional dephasing rates with time constants as short as 2.5 ps are captured with high accuracy for individual rotational transitions. S-branch linewidths of N2 and O2 from ∼0.06 to 2.2 cm−1 and the line separation of O2 triplet states are obtained from the measured dephasing rates and compared with high-resolution, frequency-domain measurements and S-branch approximations using the modified exponential gap model. The accuracy of the current measurements suggests that the fs/ps RCARS approach is well suited for tracking the collisional dynamics of gas-phase mixtures over a wide range of pressures

    Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence

    Get PDF
    Gas-phase temperatures and concentrations are measured from the magnitude and decay of the initial Raman coherence in femtosecond coherent anti-Stokes Raman scattering (CARS). A time-delayed probe beam is scattered from the Raman polarization induced by pump and Stokes beams to generate CARS signal; the dephasing rate of this initial coherence is determined by the temperature-sensitive frequency spread of the Raman transitions. Temperature is measured from the CARS signal decrease with increasing probe delay. Concentration is found from the ratio of the CARS and nonresonant background signals. Collision rates do not affect the determination of these quantities

    Recent Developments in X-Ray Diagnostics for Cryogenic and Optically Dense Coaxial Rocket Sprays

    Get PDF
    The mixing and atomization of propellants is often characterized by optically dense flow fields and complex breakup dynamics. In the development of propulsion systems, the complexity of relevant physics and the range of spatio-temporal scales often makes computational simulation impractical for full scale injector elements; consequently, continued research into improved systems for experimental flow diagnostics is ongoing. One area of non-invasive flow diagnostics which has seen widespread growth is using synchrotron based x-ray diagostics. Over the past 3 years, a series of water and cryogenic based experiments were performed at the Advanced Photon Source, Argonne National Lab, on a NASA in-house designed swirl co-axial rocket injector, designed for operation using liquid oxygen and liquid methane in support of Project Morpheus. A range of techniques, such as x-ray fluorescence and time-averaged radiography were performed providing qualitative and quantitative mass and phase distributions, and were complemented by investigations using time-resolved radiography and white beam imaging, which provided information on breakup and mixing dynamics. Results of these investigations are presented, and conclusions regarding the viability of x-ray based diagnostics are discussed

    High-speed CH planar laser-induced fluorescence imaging using a multimode-pumped optical parametric oscillator

    Get PDF
    We report on high-speed CH planar laser-induced fluorescence (PLIF) imaging in turbulent diffusion flames using a multimode-pumped optical parametric oscillator (OPO). The OPO is pumped by the third-harmonic output of a multimode Nd:YAG cluster for direct signal excitation in the A-X (0,0) band of the CH radical. The lasing threshold, conversion efficiency, and linewidth are shown to depend on the number of pump passes in the ring cavity of the OPO. Single-shot CH PLIF images are acquired at 10 kHz with excitation energy up to 6 mJ=pulse at 431:1nm. Signalto- noise ratios of ∼25–35 are the highest yet reported for high-speed CH PLIF
    • …
    corecore