2,677 research outputs found

    Identification of chloroplast DNA insertions in nuclear chromosomes of maize B73 line using the FISH procedure

    Get PDF
    Abstract only availableIt is known that chloroplast DNA can incorporate itself into the nuclear genome of plants. However, the sites of chloroplast (ct) DNA integration into chromosomes of maize have not yet been analyzed. This project is the first attempt to find the location of the ctDNA on the maize chromosomes. Fluorescent in situ hybridization is a technique that has proved useful in karyotyping and chromosomal mapping in maize. The FISH procedure is being used in this study to discover the location of the ctDNA in the nuclear genome of the inbred line B37. In order to develop ctDNA “probes” for FISH analysis, we have used the polymerase chain reaction (PCR) to produce fragments of ctDNA. Primers were chosen to amplify fragments of 10 kb or larger. The amplified DNAs were purified and labeled with fluorescent dyes and these probes were subsequently hybridized to chromosomes. The probes recognize and bind to the corresponding DNA sequences within the chromosomes. Root tip cells were used to prepare the slides for hybridization. Because the cells are collected during the metaphase stage of division, the chromosomes are compact and more easily visible. Chromosomes that contain ctDNA can be detected using a compound microscope with fluorescent attachments. The location of the ctDNA on the chromosomes is made visible by the fluorescent labeling of the probe. Eight of eleven regions of the chloroplast genome of the B73 line have been specifically amplified and have been observed under the microscope for FISH analysis. This information will contribute to an understanding of the extent and mechanism of transfer of organellar genomes to the nucleus.MU Monsanto Undergraduate Research Fellowshi

    Room-Temperature Distance Measurements of Immobilized Spin-Labeled Protein by DEER/PELDOR

    Get PDF
    Nitroxide spin labels are used for double electron-electron resonance (DEER) measurements of distances between sites in biomolecules. Rotation of gem-dimethyls in commonly used nitroxides causes spin echo dephasing times (Tm) to be too short to perform DEER measurements at temperatures between ∼80 and 295 K, even in immobilized samples. A spirocyclohexyl spin label has been prepared that has longer Tm between 80 and 295 K in immobilized samples than conventional labels. Two of the spirocyclohexyl labels were attached to sites on T4 lysozyme introduced by site-directed spin labeling. Interspin distances up to ∼4 nm were measured by DEER at temperatures up to 160 K in water/glycerol glasses. In a glassy trehalose matrix the Tm for the doubly labeled T4 lysozyme was long enough to measure an interspin distance of 3.2 nm at 295 K, which could not be measured for the same protein labeled with the conventional 1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3- (methyl)methanethio-sulfonate label

    Room-Temperature Distance Measurements of Immobilized Spin-Labeled Protein by DEER/PELDOR

    Get PDF
    Nitroxide spin labels are used for double electron-electron resonance (DEER) measurements of distances between sites in biomolecules. Rotation of gem-dimethyls in commonly used nitroxides causes spin echo dephasing times (Tm) to be too short to perform DEER measurements at temperatures between ∼80 and 295 K, even in immobilized samples. A spirocyclohexyl spin label has been prepared that has longer Tm between 80 and 295 K in immobilized samples than conventional labels. Two of the spirocyclohexyl labels were attached to sites on T4 lysozyme introduced by site-directed spin labeling. Interspin distances up to ∼4 nm were measured by DEER at temperatures up to 160 K in water/glycerol glasses. In a glassy trehalose matrix the Tm for the doubly labeled T4 lysozyme was long enough to measure an interspin distance of 3.2 nm at 295 K, which could not be measured for the same protein labeled with the conventional 1-oxyl-2,2,5,5-tetramethyl-3-pyrroline-3- (methyl)methanethio-sulfonate label

    Prenatal smoke exposure induces persistent Cyp2a5 methylation and increases nicotine metabolism in the liver of neonatal and adult male offspring

    Get PDF
    Prenatal smoke exposure (PSE) is a risk factor for nicotine dependence. One susceptibility gene for nicotine dependence is Cytochrome P450 (CYP) 2A6, an enzyme responsible for the conversion of nicotine to cotinine and nicotine clearance in the liver. Higher activity of the CYP2A6 enzyme is associated with nicotine dependence, but no research has addressed the PSE effects on the CYP2A6 gene or its mouse homologue Cyp2a5. We hypothesized that PSE affects Cyp2a5 promoter methylation, Cyp2a5 mRNA levels, and nicotine metabolism in offspring. We used a smoke-exposed pregnant mouse model. RNA, DNA, and microsomal protein were isolated from liver tissue of foetal, neonatal, and adult offspring. Enzyme activity, Cyp2a5 mRNA levels, and Cyp2a5 methylation status of six CpG sites within the promoter region were analysed via HPLC, RT-PCR, and bisulphite pyrosequencing. Our data show that PSE induced higher cotinine levels in livers of male neonatal and adult offspring compared to controls. PSE-induced cotinine levels in neonates correlated with Cyp2a5 mRNA expression and promoter methylation at CpG-7 and CpG+45. PSE increased methylation in almost all CpG sites in foetal offspring, and this effect persisted at CpG-74 in male neonatal and adult offspring. Our results indicate that male offspring of mothers which were exposed to cigarette smoke during pregnancy have a higher hepatic nicotine metabolism, which could be regulated by DNA methylation. Given the detected persistence into adulthood, extrapolation to the human situation suggests that sons born from smoking mothers could be more susceptible to nicotine dependence later in life

    Delayed union of femoral fractures in older rats:decreased gene expression

    Get PDF
    BACKGROUND: Fracture healing slows with age. While 6-week-old rats regain normal bone biomechanics at 4 weeks after fracture, one-year-old rats require more than 26 weeks. The possible role of altered mRNA gene expression in this delayed union was studied. Closed mid-shaft femoral fractures were induced followed by euthanasia at 0 time (unfractured) or at 1, 2, 4 or 6 weeks after fracture in 6-week-old and 12-15-month-old Sprague-Dawley female rats. mRNA levels were measured for osteocalcin, type I collagen α1, type II collagen, bone morphogenetic protein (BMP)-2, BMP-4 and the type IA BMP receptor. RESULTS: For all of the genes studied, the mRNA levels increased in both age groups to a peak at one to two weeks after fracture. All gene expression levels decreased to very low or undetectable levels at four and six weeks after fracture for both age groups. At four weeks after fracture, the younger rats were healed radiographically, but not the older rats. CONCLUSIONS: (1) All genes studied were up-regulated by fracture in both age groups. Thus, the failure of the older rats to heal promptly was not due to the lack of expression of any of the studied genes. (2) The return of the mRNA gene expression to baseline values in the older rats prior to healing may contribute to their delayed union. (3) No genes were overly up-regulated in the older rats. The slower healing response of the older rats did not stimulate a negative-feedback increase in the mRNA expression of stimulatory cytokines

    Sex differences in associations of comorbidities with incident cardiovascular disease: focus on absolute risk

    Get PDF
    AIM: To examine sex differences in associations of obesity, type-2 diabetes, hypertension, and atrial fibrillation (AF) with incident cardiovascular disease (CVD), focusing on absolute risk measures. METHODS AND RESULTS: We included a total of 7994 individuals (mean age 49.1 years; 51.2% women) without prior CVD from the PREVEND (Prevention of Renal and Vascular End-stage Disease) cohort with a median follow-up of 12.5 years. Using Poisson regression, we calculated the increase in absolute as well as relative CVD risk associated with a comorbidity using incidence rate differences (IRD = IR(comorbidity)−IR(no-comorbidity)) and incidence rate ratios (IRR = IR(comorbidity)/IR(no-comorbidity)), respectively. Sex differences were presented as women-to-men differences (WMD = IRD(women)−IRD(men)) and women-to-men ratios (WMR = IRR(women)/IRR(men)). Absolute CVD risk was lower in women than in men (IR(women): 6.73 vs. IR(men): 14.58 per 1000 person-years). While increase in absolute CVD risk associated with prevalent hypertension was lower in women than in men [WMD: −6.12, 95% confidence interval: (−9.84 to −2.40), P = 0.001], increase in absolute CVD risk associated with prevalent obesity [WMD: −4.25 (−9.11 to 0.61), P = 0.087], type-2 diabetes [WMD: −1.04 (−14.36 to 12.29), P = 0.879] and AF [WMD: 18.39 (−39.65 to 76.43), P = 0.535] did not significantly differ between the sexes. Using relative risk measures, prevalent hypertension [WMR: 1.49%, 95% confidence interval: (1.12–1.99), P = 0.006], type-2 diabetes [WMR: 1.73 (1.09–2.73), P = 0.019], and AF [WMR: 2.53 (1.12–5.70), P = 0.025] were all associated with higher CVD risk in women than in men. CONCLUSION: Increase in absolute risk of developing CVD is higher in hypertensive men than in hypertensive women, but no substantial sex-related differences were observed among individuals with obesity, type-2 diabetes and AF. On a relative risk scale, comorbidities, in general, confer a higher CVD risk in women than in men
    corecore