2,641 research outputs found

    Tardigrades from Fayette County, Georgia

    Get PDF
    Only three species from the phylum Tardigrada have been reported in Georgia. Samples of leaf litter and cryptogams collected in 2003 in Fayette County, Georgia, were examined for the presence of tardigrades. Diphascon (Diphascon) pinque, Macrobiotus coronatus, Macrobiotus harmsworthii, Macrobiotus hibiscus, Macrobiotus richtersi, Minibiotus furcatus, Minibiotus intermedius, Isohypsibius nodosus, and Milnesium tardigradum were present in the samples. All nine are additions to the fauna of Georgia

    A Contribution to the Tardigrade Fauna of Georgia, USA

    Get PDF
    Tardigrada (water bears) is a phylum of microscopic animals commonly found in mosses, lichens, leaf litter, and freshwater. There are no published records of marine tardigrades from Georgia. Twelve species have been reported from four counties in the state of Georgia, USA. Eighteen species of water bear were present in lichen, moss, and leaf litter samples from eight additional counties in northern and central Georgia. Ten species – Pseudechiniscus suillus, Milnesium bohleberi, Hypsibius convergens, Astatumen trinacriae, Macrobiotus anemone, Macrobiotus cf. echinogenitus, Macrobiotus cf. islandicus, Macrobiotus spectabilis, Paramacrobiotus cf. areolatus, and Paramacrobiotus tonollii – are new to the fauna of Georgia

    Spin/orbit moment imbalance in the near-zero moment ferromagnetic semiconductor SmN

    Full text link
    SmN is ferromagnetic below 27 K, and its net magnetic moment of 0.03 Bohr magnetons per formula unit is one of the smallest magnetisations found in any ferromagnetic material. The near-zero moment is a result of the nearly equal and opposing spin and orbital moments in the 6H5/2 ground state of the Sm3+ ion, which leads finally to a nearly complete cancellation for an ion in the SmN ferromagnetic state. Here we explore the spin alignment in this compound with X-ray magnetic circular dichroism at the Sm L2,3 edges. The spectral shapes are in qualitative agreement with computed spectra based on an LSDA+U (local spin density approximation with Hubbard-U corrections) band structure, though there remain differences in detail which we associate with the anomalous branching ratio in rare-earth L edges. The sign of the spectra determine that in a magnetic field the Sm 4f spin moment aligns antiparallel to the field; the very small residual moment in ferromagnetic SmN aligns with the 4f orbital moment and antiparallel to the spin moment. Further measurements on very thin (1.5 nm) SmN layers embedded in GdN show the opposite alignment due to a strong Gd-Sm exchange, suggesting that the SmN moment might be further reduced by about 0.5 % Gd substitution

    Genome-wide methylome analysis using MethylCap-seq uncovers 4 hypermethylated markers with high sensitivity for both adeno- and squamous-cell cervical carcinoma

    Get PDF
    Background: Cytology-based screening methods for cervical adenocarcinoma (ADC) and to a lesser extent squamous-cell carcinoma (SCC) suffer from low sensitivity. DNA hypermethylation analysis in cervical scrapings may improve detection of SCC, but few methylation markers have been described for ADC. We aimed to identify novel methylation markers for the early detection of both ADC and SCC. Results: Genome-wide methylation profiling for 20 normal cervices, 6 ADC and 6 SCC using MethylCap-seq yielded 53 candidate regions hypermethylated in both ADC and SCC. Verification and independent validation of the 15 most significant regions revealed 5 markers with differential methylation between 17 normals and 13 cancers. Quantitative methylation-specific PCR on cervical cancer scrapings resulted in detection rates ranging between 80% and 92% while between 94% and 99% of control scrapings tested negative. Four markers (SLC6A5, SOX1, SOX14 and TBX20) detected ADC and SCC with similar sensitivity. In scrapings from women referred with an abnormal smear (n = 229), CIN3+ sensitivity was between 36% and 71%, while between 71% and 93% of adenocarcinoma in situ (AdCIS) were detected; and CIN0/1 specificity was between 88% and 98%. Compared to hrHPV, the combination SOX1/SOX14 showed a similar CIN3+ sensitivity (80% vs. 75%, respectively, P>0.2), while specificity improved (42% vs. 84%, respectively, P < 10(-5)). Conclusion: SOX1 and SOX14 are methylation biomarkers applicable for screening of all cervical cancer types

    Liquid Oxygen/Liquid Methane Propulsion and Cryogenic Advanced Development

    Get PDF
    Exploration Systems Architecture Study conducted by NASA in 2005 identified the liquid oxygen (LOx)/liquid methane (LCH4) propellant combination as a prime candidate for the Crew Exploration Vehicle Service Module propulsion and for later use for ascent stage propulsion of the lunar lander. Both the Crew Exploration Vehicle and Lunar Lander were part the Constellation architecture, which had the objective to provide global sustained lunar human exploration capability. From late 2005 through the end of 2010, NASA and industry matured advanced development designs for many components that could be employed in relatively high thrust, high delta velocity, pressure fed propulsion systems for these two applications. The major investments were in main engines, reaction control engines, and the devices needed for cryogenic fluid management such as screens, propellant management devices, thermodynamic vents, and mass gauges. Engine and thruster developments also included advanced high reliability low mass igniters. Extensive tests were successfully conducted for all of these elements. For the thrusters and engines, testing included sea level and altitude conditions. This advanced development provides a mature technology base for future liquid oxygen/liquid methane pressure fed space propulsion systems. This paper documents the design and test efforts along with resulting hardware and test results

    The role of modelling and analytics in South African COVID-19 planning and budgeting

    Get PDF
    Background The South African COVID-19 Modelling Consortium (SACMC) was established in late March 2020 to support planning and budgeting for COVID-19 related healthcare in South Africa. We developed several tools in response to the needs of decision makers in the different stages of the epidemic, allowing the South African government to plan several months ahead. Methods Our tools included epidemic projection models, several cost and budget impact models, and online dashboards to help government and the public visualise our projections, track case development and forecast hospital admissions. Information on new variants, including Delta and Omicron, were incorporated in real time to allow the shifting of scarce resources when necessary. Results Given the rapidly changing nature of the outbreak globally and in South Africa, the model projections were updated regularly. The updates reflected 1) the changing policy priorities over the course of the epidemic; 2) the availability of new data from South African data systems; and 3) the evolving response to COVID-19 in South Africa, such as changes in lockdown levels and ensuing mobility and contact rates, testing and contact tracing strategies and hospitalisation criteria. Insights into population behaviour required updates by incorporating notions of behavioural heterogeneity and behavioural responses to observed changes in mortality. We incorporated these aspects into developing scenarios for the third wave and developed additional methodology that allowed us to forecast required inpatient capacity. Finally, real-time analyses of the most important characteristics of the Omicron variant first identified in South Africa in November 2021 allowed us to advise policymakers early in the fourth wave that a relatively lower admission rate was likely. Conclusion The SACMC’s models, developed rapidly in an emergency setting and regularly updated with local data, supported national and provincial government to plan several months ahead, expand hospital capacity when needed, allocate budgets and procure additional resources where possible. Across four waves of COVID-19 cases, the SACMC continued to serve the planning needs of the government, tracking waves and supporting the national vaccine rollout

    NASA Light Emitting Diode Medical Applications from Deep Space to Deep Sea

    Get PDF
    This work is supported and managed through the NASA Marshall Space Flight Center-SBIR Program. LED-technology developed for NASA plant growth experiments in space shows promise for delivering light deep into tissues of the body to promote wound healing and human tissue growth. We present the results of LED-treatment of cells grown in culture and the effects of LEDs on patients’ chronic and acute wounds. LED-technology is also biologically optimal for photodynamic therapy of cancer and we discuss our successes using LEDs in conjunction with light-activated chemotherapeutic drugs

    Structural Evolution of Molybdenum Carbides in Hot Aqueous Environments and Impact on Low-Temperature Hydroprocessing of Acetic Acid

    Get PDF
    We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating the possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. The results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils

    A simple microscopy setup for visualizing cellular responses to DNA damage at particle accelerator facilities

    Get PDF
    Cellular responses to DNA double-strand breaks (DSBs) not only promote genomic integrity in healthy tissues, but also largely determine the efficacy of many DNA-damaging cancer treatments, including X-ray and particle therapies. A growing body of evidence suggests that activation of the mechanisms that detect, signal and repair DSBs may depend on the complexity of the initiating DNA lesions. Studies focusing on this, as well as on many other radiobiological questions, require reliable methods to induce DSBs of varying complexity, and to visualize the ensuing cellular responses. Accelerated particles of different energies and masses are exceptionally well suited for this task, due to the nature of their physical interactions with the intracellular environment, but visualizing cellular responses to particle-induced damage - especially in their early stages - at particle accelerator facilities, remains challenging. Here we describe a straightforward approach for real-time imaging of early response to particle-induced DNA damage. We rely on a transportable setup with an inverted fluorescence confocal microscope, tilted at a small angle relative to the particle beam, such that cells can be irradiated and imaged without any microscope or beamline modifications. Using this setup, we image and analyze the accumulation of fluorescently-tagged MDC1, RNF168 and 53BP1—key factors involved in DSB signalling—at DNA lesions induced by 254 MeV α-particles. Our results provide a demonstration of technical feasibility and reveal asynchronous initiation of accumulation of these proteins at different individual DSBs

    An MPEG-7 scheme for semantic content modelling and filtering of digital video

    Get PDF
    Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users
    corecore