2,091 research outputs found

    Measurement and models accounting for cell death capture hidden variation in compound response.

    Get PDF
    Cancer cell sensitivity or resistance is almost universally quantified through a direct or surrogate measure of cell number. However, compound responses can occur through many distinct phenotypic outcomes, including changes in cell growth, apoptosis, and non-apoptotic cell death. These outcomes have divergent effects on the tumor microenvironment, immune response, and resistance mechanisms. Here, we show that quantifying cell viability alone is insufficient to distinguish between these compound responses. Using an alternative assay and drug-response analysis amenable to high-throughput measurement, we find that compounds with identical viability outcomes can have very different effects on cell growth and death. Moreover, additive compound pairs with distinct growth/death effects can appear synergistic when only assessed by viability. Overall, these results demonstrate an approach to incorporating measurements of cell death when characterizing a pharmacologic response

    Consistency of hadronic vacuum polarization between lattice QCD and the R ratio

    Get PDF
    There are emerging tensions for theory results of the hadronic vacuum polarization contribution to the muon anomalous magnetic moment both within recent lattice QCD calculations and between some lattice QCD calculations and R-ratio results. In this paper, we work toward scrutinizing critical aspects of these calculations. We focus in particular on a precise calculation of Euclidean position-space windows defined by RBC/UKQCD that are ideal quantities for cross-checks within the lattice community and with R-ratio results. We perform a lattice QCD calculation using physical up, down, strange, and charm sea quark gauge ensembles generated in the staggered formalism by the MILC Collaboration. We study the continuum limit using inverse lattice spacings from a(-1) approximate to 1.6 GeV to 3.5 GeV, identical to recent studies by FNAL/HPQCD/MILC and Aubin et al. and similar to the recent study of BMW. Our calculation exhibits a tension for the particularly interesting window result of a(mu)(ud,conn.,isospin,W) from 0.4 to 1.0 fm with previous results obtained with a different discretization of the vector current on the same gauge configurations. Our results may indicate a difficulty related to estimating uncertainties of the continuum extrapolation that deserves further attention. In this work, we also provide results for a(mu)(ud,conn.,isospin), a(mu)(s,conn.,isospin), a(mu)(SIB,conn.) for the total contribution and a large set of windows. For the total contribution, we find a(mu)(HVPLO) = 714(27)(13)10(-10), a(mu)(ud,conn.,isospin) 657(26)(12)10(-1)0, a(mu)(s,conn.,isospin) = 52.83(22)(65)10(-1)0, and a(mu)(SIB,conn.) = 9.0(0.8)(1.2)10(-10), where the first uncertainty is statistical and the second systematic. We also comment on finite-volume corrections for the strong-isospin-breaking corrections

    Analysis, Visualization, and Transformation of Audio Signals Using Dictionary-based Methods

    Get PDF
    date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +0000date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +000

    First measurements of high frequency cross-spectra from a pair of large Michelson interferometers

    Get PDF
    Measurements are reported of the cross-correlation of spectra of differential position signals from the Fermilab Holometer, a pair of co-located 39 m long, high power Michelson interferometers with flat, broadband frequency response in the MHz range. The instrument obtains sensitivity to high frequency correlated signals far exceeding any previous measurement in a broad frequency band extending beyond the 3.8 MHz inverse light crossing time of the apparatus. The dominant but uncorrelated shot noise is averaged down over 2×1082\times 10^8 independent spectral measurements with 381 Hz frequency resolution to obtain 2.1×10−20 m/Hz2.1\times 10^{-20} \ \mathrm{m}/\sqrt{\mathrm{Hz}} sensitivity to stationary signals. For signal bandwidths Δf>11\Delta f > 11 kHz, the sensitivity to strain hh or shear power spectral density of classical or exotic origin surpasses a milestone PSDδh<tpPSD_{\delta h} < t_p where tp=5.39×10−44/Hzt_p= 5.39\times 10^{-44}/\mathrm{Hz} is the Planck time.Comment: 5 pages, 3 figure

    Interferometric Constraints on Quantum Geometrical Shear Noise Correlations

    Get PDF
    Final measurements and analysis are reported from the first-generation Holometer, the first instrument capable of measuring correlated variations in space-time position at strain noise power spectral densities smaller than a Planck time. The apparatus consists of two co-located, but independent and isolated, 40 m power-recycled Michelson interferometers, whose outputs are cross-correlated to 25 MHz. The data are sensitive to correlations of differential position across the apparatus over a broad band of frequencies up to and exceeding the inverse light crossing time, 7.6 MHz. By measuring with Planck precision the correlation of position variations at spacelike separations, the Holometer searches for faint, irreducible correlated position noise backgrounds predicted by some models of quantum space-time geometry. The first-generation optical layout is sensitive to quantum geometrical noise correlations with shear symmetry---those that can be interpreted as a fundamental noncommutativity of space-time position in orthogonal directions. General experimental constraints are placed on parameters of a set of models of spatial shear noise correlations, with a sensitivity that exceeds the Planck-scale holographic information bound on position states by a large factor. This result significantly extends the upper limits placed on models of directional noncommutativity by currently operating gravitational wave observatories.Comment: Matches the journal accepted versio

    WALLABY Early Science - I. The NGC 7162 Galaxy Group

    Full text link
    We present Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science results from the Australian Square Kilometre Array Pathfinder (ASKAP) observations of the NGC 7162 galaxy group. We use archival HIPASS and Australia Telescope Compact Array (ATCA) observations of this group to validate the new ASKAP data and the data reduction pipeline ASKAPsoft. We detect six galaxies in the neutral hydrogen (HI) 21-cm line, expanding the NGC 7162 group membership from four to seven galaxies. Two of the new detections are also the first HI detections of the dwarf galaxies, AM 2159-434 and GALEXASC J220338.65-431128.7, for which we have measured velocities of cz=2558cz=2558 and cz=2727cz=2727 km s−1^{-1}, respectively. We confirm that there is extended HI emission around NGC 7162 possibly due to past interactions in the group as indicated by the 40∘40^{\circ} offset between the kinematic and morphological major axes for NGC 7162A, and its HI richness. Taking advantage of the increased resolution (factor of ∼1.5\sim1.5) of the ASKAP data over archival ATCA observations, we fit a tilted ring model and use envelope tracing to determine the galaxies' rotation curves. Using these we estimate the dynamical masses and find, as expected, high dark matter fractions of fDM∼0.81−0.95f_{\mathrm{DM}}\sim0.81-0.95 for all group members. The ASKAP data are publicly available.Comment: 20 pages, 11 figures, accepted for publication in MNRA
    • …
    corecore